Skip to main content
Log in

Controlled synthesis and luminescence properties of Ca0.5Y1-x(MoO4)2:xRE3+ (RE = Eu, Pr, Sm, Tb, Dy, Yb/Er, Yb/Tm, and Yb/Ho) phosphors by hydrothermal method versus pulsed laser deposition

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Herein, we report on rare-earth (RE) activated Ca0.5Y1-x(MoO4)2:xRE3+ (RE = Eu, Pr, Sm, Tb, Dy, Yb/Er, Yb/Ho, and Yb/Tm) phosphors synthesized using a surfactant-mediated hydrothermal route. Timedependent experiments were performed, and the morphological evolution of the phosphors was studied. From prepared powder samples of Ca0.5Y1-x(MoO4)2:xRE3+ (RE = Eu and Yb/Er), nano-sized thin phosphor films were grown using pulsed laser deposition (PLD). The surface topography of the as-grown thin phosphor films was analyzed. The asprepared phosphors were characterized by structural and optical studies. The powder phosphor exhibited bi pyramid-like micro-architectures. Structural studies indicated that Ca0.5Y1-x(MoO4)2 possesses the scheelite tetragonal crystal structure. The down-conversion luminescence of Ca0.5Y1-x(MoO4)2:xRE3+ (RE = Eu, Pr, Sm, Tb, and Dy) as powder phosphors and Eu3+ doped Ca0.5Y1-x(MoO4)2 thin phosphor film were studied. Upon irradiation with a 980 nm laser, the Ca0.5Y1-x(MoO4)2: xRE3+ (RE = Yb/Er, Yb/Ho, and Yb/Tm) powder phosphors and Ca0.5Y1-x(MoO4)2:xRE3+ (RE = Yb/Er) thin phosphor film showed intense up-converted visible emissions in green, yellow, and blue regions. The fluorescence decay time and color co-ordinates were determined for all synthesized phosphors. From the obtained results, the prepared powder and thin film phosphors are suggested to be suitable candidates for display and electro-luminescence applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zhang, L. Zhang, C. Song, G. Jia, S. Huo, and S. Shen, J. Alloy Compd. 589, 185 (2014).

    Article  Google Scholar 

  2. Y. Chen, X. Yan, Q. Liu, and X. Wang, J. Alloy Compd. 562, 99 (2013).

    Article  Google Scholar 

  3. J. Zhao, J. Yin, and M. Yang, J. Alloy Compd. 579, 45 (2013).

    Article  Google Scholar 

  4. S. W. Park, B. K. Moon, B. C. Choi, J. H. Jeong, J. S. Bae, and K. H. Kim, Curr. Appl. Phys. 12, S150 (2012).

  5. R. Krishnan and J. Thirumalai, RSC Adv. 4, 64258 (2014).

    Article  Google Scholar 

  6. R. Krishnan and J. Thirumalai, New J. Chem. 38, 3480 (2014).

    Article  Google Scholar 

  7. R. Krishnan, J. Thirumalai, S. Thomas, and M. Gowri, J. Alloy Compd. 604, 20 (2014).

    Article  Google Scholar 

  8. R. Krishnan, J. Thirumalai, and A. Kathiravan, Electron. Mater. Lett. 11, 24 (2015).

    Article  Google Scholar 

  9. Y. Sun, J. Hu, N. Wang, R. Zou, J. Wu, Y. Song, H. Chen, H. Chen, and Z. Chen, New J. Chem. 34, 732 (2010).

    Article  Google Scholar 

  10. J. Zhang, X. Wang, X. Zhang, X. Zhao, X. Liu, and L. Peng, Inorg. Chem. Commun. 14, 1723 (2011).

    Article  Google Scholar 

  11. L. Zhang, X. F. Cao, Y. L. Ma, X. T. Chen, and Z. L. Xue, New J. Chem. 34, 2027 (2010).

    Article  Google Scholar 

  12. T. D. Nguyen, C. T. Dinh, D. T. Nguyen, and T. O. Do, J. Phys. Chem. C. 113, 18584 (2009).

    Article  Google Scholar 

  13. A. Aboulaich, J. Deschamps, R. Deloncle, A. Potdevin, B. Devouard, G. Chadeyron, and R. Mahiou, New J. Chem. 36, 2493 (2012).

    Article  Google Scholar 

  14. M. Ding, C. Lu, L. Cao, W. Huang, Y. Nia, and Z. Xu, CrystEngComm. 15, 6015 (2013).

    Article  Google Scholar 

  15. K. Zheng, Y. Liu, Z. Liu, Z. Chen, and W. Qin, Dalton T. 42, 5159 (2013).

    Article  Google Scholar 

  16. Q. Chen, L. Qin, Z. Feng, R. Ge, X. Zhao, and H. Xu, J. Rare Earth. 29, 843 (2011).

    Article  Google Scholar 

  17. X. Liu, J. Zhang, L. Wang, T. Yang, X. Guo, S. Wu, and S. Wang, J. Mater. Chem. 21, 349 (2011).

    Article  Google Scholar 

  18. H. Lin, X. Yan, and X. Wang, J. Solid State Chem. 204, 266 (2013).

    Article  Google Scholar 

  19. G. Li, L. Li, M. Li, W. Bao, Y. Song, S. Gan, H. Zou, and X. Xu, J. Alloy Compd. 550, 1 (2013).

    Article  Google Scholar 

  20. J. Thirumalai, R. Krishnan, I. B. S. Banu, and R. Chandramohan, J. Mater. Sci-Mater. El. 24, 253 (2013).

    Article  Google Scholar 

  21. L. Zhang, X. F. Cao, Y. L. Ma, X. T. Chen, and Z. L. Xue, New J. Chem. 34, 2027 (2010).

    Article  Google Scholar 

  22. Y. Chen, M. Wen, and Q. Wu, CrystEngComm. 13, 3035 (2011).

    Article  Google Scholar 

  23. Y. Li and X. Liu, J. Lumin. 151, 52 (2014).

    Article  Google Scholar 

  24. A. Xiea, X. Yuan, F. Wang, Y. Shi, J. Li, L. Liu, and Z. Mu, J. Alloy Compd. 501, 124 (2010).

    Article  Google Scholar 

  25. Y. Hua, W. Zhuang, H. Ye, D. Wang, S. Zhang, and X. Huang, J. Alloy Compd. 390, 226 (2005).

    Article  Google Scholar 

  26. V. V. Atuchin, A. S. Aleksandrovsky, O. D. Chimitova, T. A. Gavrilova, A. S. Krylov, M. S. Molokeev, A. S. Oreshonkov, B. G. Bazarov, and J. G. Bazarova, J. Phys. Chem. C 118, 15404 (2014).

    Article  Google Scholar 

  27. W. T. Hong, J. H. Lee, H. I. Jang, and H. K. Yang, J. Korean Phys. Soc. 66, 1895 (2015).

    Article  Google Scholar 

  28. J. Liao, D. Zhou, H. You, H.-R. Wen, Q. Zhou, and B. Yang, Optik 124, 1362 (2013).

    Article  Google Scholar 

  29. A. M. Kaczmarek and R. V. Deun, Chem. Soc. Rev. 42, 8835 (2013).

    Article  Google Scholar 

  30. C. Hazra, T. Samanta, A. V. Asaithambi, and V. Mahalingam, Dalton T. 43, 6623 (2014).

    Article  Google Scholar 

  31. C. Xueqin, L. Li, W. Xiantao, C. Yonghu, Z. Weiping, and Y. Min, J. Nanosci. Nanotechno. 11, 9543 (2011).

    Article  Google Scholar 

  32. G. Ajithkumar, B. Yoo, D. E. Goral, P. J. Hornsby, A. L. Lin, U. Ladiwala, V. P. Dravid, and D. K. Sardar, J. Mater. Chem. B. 1, 1561 (2013).

    Article  Google Scholar 

  33. B. K. Gupta, T. N. Narayanan, S. A. Vithayathil, Y. Lee, S. Koshy, A. L. M. Reddy, A. Saha, V. Shanker, V. N. Singh, B. A. Kaipparettu, A. A. Martí, and P. M. Ajayan, Small 8, 3028 (2012).

    Article  Google Scholar 

  34. X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, Nano Lett. 8, 1219 (2008).

    Article  Google Scholar 

  35. P. A. Atanasov, R. I. Tomov, J. Perriere, R. W. Eason, N. Vainos, A. Klini, A. Zherikhin, and E. Millon, Appl. Phys. Lett. 76, 2490 (2000).

    Article  Google Scholar 

  36. D. Barreca, L. E. Depero, V. D. Noto, G. A. Rizzi, L. Sangaletti, and E. Tondello, Chem. Mater. 11, 255 (1999).

    Article  Google Scholar 

  37. M. Yanagihara, M. Z. Yusop, M. Tanemura, S. Ono, T. Nagami, K. Fukuda, T. Suyama, Y. Yokota, T. Yanagida, and A. Yoshikawa, APL Mater. 2, 046110 (2014).

    Article  Google Scholar 

  38. P. K. Patel, K. L. Yadav, and G. Kaur, RSC Adv. 4, 28056 (2014).

    Article  Google Scholar 

  39. G. Rijnders and D. H. A. Blank, Pulsed Laser Deposition of Thin Films (ed., R. Eason), p. 177, Wiley-Interscience, New Jersey (2007).

  40. V. Mahalingam, J. Thirumalai, R. Krishnan, and R. Chandramohan, J. Mater. Sci-Mater. El. 26, 842 (2015).

    Article  Google Scholar 

  41. S. P. S. Porto and J. E. Scott, Phys. Rev. 157, 716 (1967).

    Article  Google Scholar 

  42. A. Phuruangrat, T. Thongtem, and S. Thongtem, J. Alloy Compd. 481, 568 (2009).

    Article  Google Scholar 

  43. V. M. Longo, L. S. Cavalcante, E. C. Paris, J. C. Sczancoski, P. S. Pizani, M. S. Li, J. Andres, E. Longo, and J. A. Varela, J. Phys. Chem. C. 115, 5207 (2011).

    Article  Google Scholar 

  44. T. T. Basiev, A. A. Sobol, Y. K. Voronko, and P. G. Zverev, Opt. Mater. 15, 205 (2000).

    Article  Google Scholar 

  45. A. M. Kaczmarek, K. V. Hecke, and R. V. Deun, Inorg. Chem. 53, 9498 (2014).

    Article  Google Scholar 

  46. Y. Zhou, and B. Yan, CrystEngComm. 15, 5694 (2013).

    Article  Google Scholar 

  47. K. Park, M. H. Heo, K. Y. Kim, S. J. Dhoble, Y. Kim, and J. Y. Kim, Powder Technol. 237, 102 (2013).

    Article  Google Scholar 

  48. S. J. Yoon and K. Park, Opt. Mater. 36, 1305 (2014).

    Article  Google Scholar 

  49. K. Y. Kim, S. J. Yoon, and K. Park, J. Lumin. 160, 78 (2015).

    Article  Google Scholar 

  50. V. Mahalingam, J. Thirumalai, R. Krishnan, and S. Mantha, Spectrochim. Acta A 152, 172 (2016).

    Article  Google Scholar 

  51. E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, J. Solid State Chem. 181, 1025 (2008).

    Article  Google Scholar 

  52. A. M. Srivastava, C. Renero-Lecuna, D. Santamaria-Perez, F. Rodriguez, and R. Valiente, J. Lumin. 146, 27 (2014).

    Article  Google Scholar 

  53. J. Thirumalai, R. Chandramohan, and T. A. Vijayan, Mater. Chem. Phys. 127, 259 (2011).

    Article  Google Scholar 

  54. S. Abtmeyer, R. Pazik, R. J. Wiglusz, M. Malecka, G. A. Seisenbaeva, and V. G. Kessler, Inorg. Chem. 53, 943 (2014).

    Article  Google Scholar 

  55. L. Hou, S. Cui, Z. Fu, Z. Wu, X. Fu, and J. H. Jeong, Dalton T. 43, 5382 (2014).

    Article  Google Scholar 

  56. Y.-S. Cho, and Y.-D. Huh, Electron. Mater. Lett. 10, 1185 (2014).

    Article  Google Scholar 

  57. K. Park and M. H. Heo, J. Alloy Compd. 509, 9111 (2011).

    Article  Google Scholar 

  58. S. J. Yoon and K. Park, Int. J. Hydrogen Energ. 40, 825 (2015).

    Article  Google Scholar 

  59. S. Dutta, S. Som, and S. K. Sharma, Dalton T. 42, 9654 (2013).

    Article  Google Scholar 

  60. X. Wang, X. Kong, G. Shan, Y. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, J. Phys. Chem. B. 108, 18408 (2004).

    Article  Google Scholar 

  61. S. Huang, D. Wang, C. Li, L. Wang, X. Zhang, Y. Wan, and P. Yang, CrystEngComm. 14, 2235 (2012).

    Article  Google Scholar 

  62. J. H. Chung, S. Y. Lee, K. B. Shim, S.-Y. Kweon, S.-C. Ur, and J. H. Ryu, Appl. Phys. A. 108, 369 (2012).

    Article  Google Scholar 

  63. G. Wang, W. Qin, L. Wang, G. Wei, P. Zhu, and R. Kim, Opt. Lett. 16, 11908 (2008).

    Google Scholar 

  64. A. Pandey and V. K. Rai, Dalton T. 42, 11005 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagannathan Thirumalai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalingam, V., Thirumalai, J., Krishnan, R. et al. Controlled synthesis and luminescence properties of Ca0.5Y1-x(MoO4)2:xRE3+ (RE = Eu, Pr, Sm, Tb, Dy, Yb/Er, Yb/Tm, and Yb/Ho) phosphors by hydrothermal method versus pulsed laser deposition. Electron. Mater. Lett. 12, 32–47 (2016). https://doi.org/10.1007/s13391-015-5248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5248-x

Keywords

Navigation