Skip to main content
Log in

Relative wavelet energy and wavelet entropy based epileptic brain signals classification

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

Manual analysis of EEG signals by an expert is very much time consuming due to the long length of EEG recordings. The suitable computerized analysis is essentially required to differentiate among the normal, interictal and ictal (epileptic) EEGs.

Methods

In the present work the EEG signals are decomposed into different sub-bands using discrete wavelet transform (DWT) to obtain the detail and the approximation wavelet coefficients. The coefficients are used to calculate the quantitative values of relative wavelet energy and wavelet entropy from different data sets to select the features of EEG signals. The support vector machine (SVM), feed forward back-propagation neural network (FFBPNN), k-Nearest Neighbor Classifier (k-NN) and Decision tree classifier (DT) are used to classify the EEG signals.

Results

It is revealed that the accuracy between normal subjects with eyes open condition (data set A) epileptic data set E using SVM is obtained as 96.25%. Classification accuracy between the normal subjects with eye closed condition and epileptic data set E is obtained as 83.75% using k-NN classifier. Similar accuracies while discriminating the interictal data set C versus ictal data set E, and interictal data set D versus ictal data set E are obtained as 97.5% and 97.5% respectively, using a FFBPNN. These accuracies are quite higher than the earlier results published. The results are discussed quite in detail towards the last sections of the present paper.

Conclusions

Our experimental results demonstrate that the proposed method gives quite high statistical parameters for EEG classifications especially to classify the interictal data(C, D) and ictal data (E). These experiments indicate that the present method can be useful in analyzing and detecting the EEG signal associated with epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl. 2009; 36(2):2027–2036.

    Article  Google Scholar 

  2. Tzallas AT, Tsipouras MG, Fortiadis DI. Epileptic seizure detection in EEG using time-frequency analysis. IEEE T Inform Technol Biomed. 2009; 13(5):703–710.

    Article  Google Scholar 

  3. Adeli H, Dastidar SG, Dadmeh N. A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy. IEEE T Bio-med Eng. 2007; 54(2):205–211.

    Article  Google Scholar 

  4. Mallat S. A theory for multi-resolution signal decomposition: the wavelet representation. IEEE T Pattern Anal. 1989; 11(7):674–693.

    Article  MATH  Google Scholar 

  5. Andrzejak RG, Lehnertz K, Rieke C. Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys Rev E. 2001; 64(6): 061907.

    Article  Google Scholar 

  6. Andrzejak RG, Widman G, Lehnertz K. The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy. Epilepsy Res. 2001; 44:129–140.

    Article  Google Scholar 

  7. Rosso OA, Martin MT, Plastino A. Brain electrical activity analysis using wavelet-based informational tools (II): Tsallis non-extensivity and complexity measures. Physica A. 2003; 320:497–411.

    Article  MATH  Google Scholar 

  8. Rosso OA, Blanco S, Yordanova J, Kolev V, Figliola A, Schurmann M, Basar E. Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Meth. 2001; 105:65.

    Article  Google Scholar 

  9. Rosso OA, Martin MT, Figliola A, Keller K, Plastino A. EEG analysis using wavelet based information tools. J Neurosci Meth. 2006; 153:163–182.

    Article  Google Scholar 

  10. Mirzaei A, Ayatollahi A, Gifani P, Salehi L. EEG analysis based on wavelet spectral entropy for epileptic seizures detection. Conf Proc Biomed Eng Inform. 2010; 878–882.

  11. Al-Nashash HA, Paul JS, Thakor NV. Wavelet entropy method for EEG analysis: application to global brain injury. Conf Proc IEEE EMBS Neural Eng. 2003; 348–351.

  12. Guo L, Rivero D, Seoane J, Pazos A. Classification of EEG signals using relative wavelet energy and artificial neural networks. Proc first ACM/SIGEVO Summit Genet Evol Comput (GEC). 2009; 177–184.

  13. Kumar SP, Sriraam N, Benakop, PG, Jinaga BC. Entropies based detection of epileptic seizures with artificial neural network classifiers. J Expert Syst Appl. 2010; 37:3284–3291.

    Article  Google Scholar 

  14. Nicolaou, N, Georgiou J. Detection of epileptic electroencephalogram based on permutation entropy and support vector machine. Expert Syst Appl. 2012; 39:202–209.

    Article  Google Scholar 

  15. Hsu KC, Yu SN. Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. Comput Biol Med. 2010; 40:823–830.

    Article  Google Scholar 

  16. Acharya UR, Molinari F, Sree SV, Chattopadhyay S. Automatic diagnosis of epileptic EEG using entropies. Biomed Signal Process Control. 2011; doi:10.1016/j.bpsc.2001.07.007.

  17. Ubeyli ED. Least square support vector machine employing model-based methods coefficients for analysis of EEG signals. Expert Syst Appl. 2010; 37:233–239.

    Article  Google Scholar 

  18. Iscan Z, Dokur Z, Demiralap T. Classification of electroencephalogram signals with combined time and frequency features. Expert Syst Appl. 2011; 38:10499–10505.

    Article  Google Scholar 

  19. Foo SY, Stuart G, Harvey B, Baese AM. Neural network-based EKG pattern recognition. Eng Appl Artif Intel. 2002; 15:253–260.

    Article  Google Scholar 

  20. Kiymik MK, Akin M, Subasi A. Automatic recognition of alertness level by using wavelet transform and artificial neural network. J Neurosci Meth. 2004; 139:231–240.

    Article  Google Scholar 

  21. Kiymik MK, Subasi A, Ozcalik HR. Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure. J Med Syst. 2004; 28(6):511–522.

    Article  Google Scholar 

  22. Petrosian, A, Prokhorov D, Homan R, Dashei R, Wunsch D. Recurrent neural network based prediction of epileptic seizures in intra and extracranial EEG. Neurocomputing. 2000; 30:201–218.

    Article  Google Scholar 

  23. Subasi A. Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst Appl. 2006; 31:320–328.

    Article  Google Scholar 

  24. Kalayci T, Ozdamar O. Wavelet preprocessing for automated neural network detection of EEG spikes. IEEE Eng Med Biol. 1995; 14(2):160–166.

    Article  Google Scholar 

  25. Nigam V, Graupe D. A neural-network-based detection of epilepsy. Neurosci Res. 2004; 26(1):55–60.

    Google Scholar 

  26. Gandhi T, Panigrahi BK, Anand S. A comparative study of wavelet families for EEG signals classification. Neurocomputing. 2011; 74:3051–3057.

    Article  Google Scholar 

  27. Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl. 2007; 32(4):1084–1093.

    Article  Google Scholar 

  28. Srinivasan V, Eswaran, C, Sriraam, N. Artificial neural network based epileptic detection using time-domain and frequencydomain features. J Med Syst. 2005; 29(6):647–660.

    Article  Google Scholar 

  29. Kannathal N, Choo ML, Acharya UR, Sadasivan PK. Entropies for detection of epilepsy in EEG. Comput Meth Prog Bio. 2005; 80:187–194

    Article  Google Scholar 

  30. Polat K, Günes S. Classification of epileptic form EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput. 2007; 187(2):1017–1026.

    Article  MathSciNet  MATH  Google Scholar 

  31. Tzallas AT, Tsipouras MG, Fotiadis DI. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci. 2007; doi:10.1155/2007/80510.

  32. Guo L, Riveero D, Pazaos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Meth. 2010; 193:156–163.

    Article  Google Scholar 

  33. Subasi A, Gursoy MI. EEG signal classification using PCA, ICA, LDA and support vector machine. Expert Syst Appl. 2010; 37:8659–8666.

    Article  Google Scholar 

  34. Guo L, Rivero D, Dorado J, Rabunal, JR, Pazos A. Automatic epileptic seizure detection in EEG based on line length feature and artificial neural network. J Neurosci Meth. 2010; 191:101–109.

    Article  Google Scholar 

  35. Orhan U, Hekim M, Ozer M. EEG signals classification using the K means clustering and a multilayer perceptron neural network model. Expert Syst Appl. 2011; 38:13475–13481.

    Article  Google Scholar 

  36. Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A. Automatic feature extraction using genetic programming: An application to epileptic EEG classification. 2011; 38:10425–1043

    Google Scholar 

  37. Wang D, Miao D, Xie C. Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst Appl. 2011; 38: 14314–14320.

    Google Scholar 

  38. K Temel, A Onder. A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data. Pattern Recogn Lett. 2010; 31:1207–1215.

    Article  Google Scholar 

  39. L Rokach, O Maimon. Decision trees: Data mining and knowledge discovery handbook in Springer Science, Business media, Inc, 2005, pp. 165–192. http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatindra Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, Y., Dewal, M.L. & Anand, R.S. Relative wavelet energy and wavelet entropy based epileptic brain signals classification. Biomed. Eng. Lett. 2, 147–157 (2012). https://doi.org/10.1007/s13534-012-0066-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-012-0066-7

Keywords

Navigation