Skip to main content
Log in

A review of electrodes for the electrical brain signal recording

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Brain is complex organ composed of numerous glial cells and neurons to convey information using chemical and electrical signals. Neural interface technology using the electrical brain signals has attracted great attention for the clinical and experimental applications. Electrode as the neural interface is the most important part in stimulating neural cells or recording neural activities. In this paper, we provide an overview of electrodes for recording the electrical brain signal. The noninvasive electrodes are primarily used to capture electroencephalogram (EEG) from outside the skull while the implantable electrodes are employed to measure electrocorticogram (ECoG), local field potential (LFP) or spike activity. Recent progress in microfabrication technology enables the development of on-board electrode that combines the entire signal processing including amplification, filtering, and digitization. This will contribute to diagnostic and therapeutic application of the neural interface for restoring physical, psychological and social functions by improving motor, sensory or cognitive abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caton R. Electrical currents of the brain. J Nerv Ment Dis. 1875; 2(4): 610.

    Google Scholar 

  2. Haas LF. Hans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography. J Neurol Neurosurg PS. 2003; 74(1): 9.

    Article  Google Scholar 

  3. Woldring S, Dirken MN. Spontaneous unit-activity in the superficial cortical layers. Acta Physiol Pharm N. 1950; 1(3): 369–79.

    Google Scholar 

  4. Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat’s striate cortex. J Physiol. 1959; 148(3): 574–91.

    Article  Google Scholar 

  5. Marg E, Adams JE. Indwelling multiple micro-electrodes in the brain. Electroen Clin Neuro. 1967; 23(3): 277–80.

    Article  Google Scholar 

  6. Asano E, Juhász C, Shah A, Muzik O, Chugani DC, Shah J, Sood S, Chugani HT. Origin and propagation of epileptic spasms delineated on electrocorticography. Epilepsia. 2005; 46(7): 1086–97.

    Article  Google Scholar 

  7. Creutzfeldt OD, Watanabe S, Lux HD. Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and erpicortical stimulation. Electroencephalogr Clin Neurophysiol. 1966; 20(1): 1–18.

    Google Scholar 

  8. Creutzfeldt OD, Watanabe S, Lux HD. Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol. 1966; 20(1): 19–37.

    Article  Google Scholar 

  9. Klee MR, Offenloch K, Tigges J. Cross-correlation analysis of electroencephalographic potentials and slow membrane transients. Science. 1965; 147(3657): 519–21.

    Article  Google Scholar 

  10. Tallgren P, Vanhatalo S, Kaila K, Voipio J. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol. 2005; 116(4): 799–806.

    Article  Google Scholar 

  11. Guideline thirteen: guidelines for standard electrode position nomenclature. American Electroencephalographic Society. J Clin Neurophysiol. 1994; 11(1): 111–3.

    Article  Google Scholar 

  12. Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. 2nd ed. New York: Oxford University Press; 2006.

    Book  Google Scholar 

  13. Griss P, Enoksson P, Tolvanen-Laakso HK, Merilainen P, Ollmar S, Stemme G. Micromachined electrodes for biopotential measurements. J Microelectromech S. 2001; 10(1): 10–6.

    Article  Google Scholar 

  14. Chiou J-C, Ko L-W, Lin C-T, Hong C-T, Jung T-P, Liang S-F, Jeng J-L. Using novel MEMS EEG sensors in detecting drowsiness application. Conf Proc IEEE Biomed Circuits Syst Soc. 2006; 33–6.

    Google Scholar 

  15. Ruffini G, Dunne S, Fuentemilla L, Grau C, Farrés E, Marco-Pallarés J, Watts PCP, Silva SRP. First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sensor Actuat A-Phys. 2008; 144(2): 275–9.

    Article  Google Scholar 

  16. Huang YJ, Wu CY, Wong AMK, Lin BS. Novel active combshaped dry electrode for EEG measurement in hairy site. IEEE T Biomed Eng. 2015; 62(1): 256–63.

    Article  Google Scholar 

  17. Chen Y-H, de Beeck MO, Vanderheyden L, Carrette E, Mihajlovic V, Vanstreels K, Grundlehner B, Gadeyne S, Boon P, Van Hoof C. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording. Sensors. 2014; 14(12): 23758–80.

    Article  Google Scholar 

  18. Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren J, Cardon L. A 3D printed dry electrode for ECG/EEG recording. Sensor Actuat A-Phys. 2012; 174: 96–102.

    Article  Google Scholar 

  19. Grozea C, Voinescu CD, Fazli S. Bristle-sensors-low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J Neural Eng. 2011; 8(2).

    Article  Google Scholar 

  20. Liao L-D, Wang I-J, Chen S-F, Chang J-Y, Lin C-T. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors. 2011; 11(6): 5819–34.

    Article  Google Scholar 

  21. Mota AR, Duarte L, Rodrigues D, Martins AC, Machado AV, Vaz F, Fiedler P, Haueisen J, Nóbrega JM, Fonseca C. Development of a quasi-dry electrode for EEG recording. Sensors Actuat A-Phys. 2013; 199: 310–7.

    Article  Google Scholar 

  22. Peng H-L, Liu J-Q, Dong Y-Z, Yang B, Chen X, Yang C-S. Parylene-based flexible dry electrode for bioptential recording. Sensors Actuat B-Chem. 2016; 231: 1–11.

    Article  Google Scholar 

  23. Harland CJ, Clark TD, Prance RJ. Remote detection of human electroencephalograms using ultrahigh input impedance electric potential sensors. Appl Phys Lett. 2002; 81(17): 3284–6.

    Article  Google Scholar 

  24. Sullivan TJ, Deiss SR, Cauwenberghs G. A low-noise, noncontact EEG/ECG sensor. Conf Proc IEEE Biomed Circ S Soc. 2007; 154–7.

    Google Scholar 

  25. Oehler M, Neumann P, Becker M, Curio G, Schilling M. Extraction of SSVEP signals of a capacitive EEG helmet for human machine interface. Conf Proc IEEE Eng Med Biol Soc. 2008; 4495–8.

    Google Scholar 

  26. Chi YM, Deiss SR, Cauwenberghs G. Non-contact low power EEG/ECG electrode for high density wearable biopotential sensor networks. Conf Proc IEEE Wearable Implantable Body Sens Netw. 2009; 246–50.

    Google Scholar 

  27. Renshaw B, Forbes A, Morison BR. Activity of isocortex and hippocampus: electrical studies with micro-electrodes. J Neurophysiol. 1940; 3(1): 74–105.

    Google Scholar 

  28. Dowben RM, Rose JE. A metal-filled microelectrode. Science. 1953; 118(3053): 22–4.

    Article  Google Scholar 

  29. Green JD. A simple microelectrode for recording from the central nervous system. Nature. 1958; 182(4640): 962.

    Article  Google Scholar 

  30. Wolbarsht ML, Macnichol EF, Wagner HG. Glass insulated platinum microelectrode. Science. 1960; 132(3436): 1309–10.

    Article  Google Scholar 

  31. Geddes LA, Roeder R. Criteria for the selection of materials for implanted electrodes. Ann Biomed Eng. 2003; 31(7): 879–90.

    Article  Google Scholar 

  32. Dymond AM, Kaechele LE, Jurist JM, Crandall PH. Brain tissue reaction to some chronically implanted metals. J Neurosurg. 1970; 33(5): 574–80.

    Article  Google Scholar 

  33. Abeles M, Goldstein MH. Multispike train analysis. Proc IEEE. 1977; 65(5): 762–73.

    Article  Google Scholar 

  34. Wörgötter F, Daunicht WJ, Eckmiller R. An on-line spike form discriminator for extracellular recordings based on an analog correlation technique. J Neurosci Methods. 1986; 17(2-3): 141–51.

    Article  Google Scholar 

  35. Salganicoff M, Sarna M, Sax L, Gerstein GL. Unsupervised waveform classification for multi-neuron recordings: a realtime, software-based system. I. Algorithms and implementation. J Neurosci Methods. 1988; 25(3): 181–7.

    Article  Google Scholar 

  36. Kreiter AK, Aertsen AM, Gerstein GL. A low-cost single-board solution for real-time, unsupervised waveform classification of multineuron recordings. J Neurosci Methods. 1989; 30(1): 59–69.

    Article  Google Scholar 

  37. Jansen RF, Ter Maat A. Automatic wave form classification of extracellular multineuron recordings. J Neurosci Methods. 1992; 41(2): 123–32.

    Article  Google Scholar 

  38. Wheeler BC, Heetderks WJ. A comparison of techniques for classification of multiple neural signals. IEEE T Biomed Eng. 1982; 29(12): 752–9.

    Article  Google Scholar 

  39. McNaughton BL, O’Keefe J, Barnes CA. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods. 1983; 8(4): 391–7.

    Article  Google Scholar 

  40. Recce M, O’Keefe J. The tetrode: a new technique for multiunit extracellular recording. Soc Neurosci Abstr. 1989; 15(2): 1250.

    Google Scholar 

  41. Hoogerwerf AC, Wise KD. A three-dimensional microelectrode array for chronic neural recording. IEEE T Biomed Eng. 1994; 41(12): 1136–46.

    Article  Google Scholar 

  42. Kozai TD, Langhals NB, Patel PR, Deng X, Zhang H, Smith KL, Lahann J, Kotov NA, Kipke DR. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater. 2012; 11(12): 1065–73.

    Article  Google Scholar 

  43. Thelin J, Jörntell H, Psouni E, Garwicz M, Schouenborg J, Danielsen N, Linsmeier CE. Implant size and fixation mode strongly influence tissue reactions in the CNS. PLoS One. 2011; doi: 10.1371/journal.pone.0016267.

    Google Scholar 

  44. Jones KE, Campbell PK. Normann RA. A glass/silicon composite intracortical electrode array. Ann Biomed Eng. 1992; 20(4): 423–37.

    Article  Google Scholar 

  45. Rousche PJ, Normann RA. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J Neurosci Methods. 1998; 82(1): 1–15.

    Article  Google Scholar 

  46. Moxon KA, Leiser SC, Gerhardt GA, Barbee KA, Chapin JK. Ceramic-based multisite electrode arrays for chronic singleneuron recording. IEEE T Biomed Eng. 2004; 51(4): 647–56.

    Article  Google Scholar 

  47. Burmeister JJ, Moxon K, Gerhardt GA. Ceramic-based multisite microelectrodes for electrochemical recordings. Anal Chem. 2000. 72(1):187–92.

    Article  Google Scholar 

  48. Wester BA, Lee RH, La Placa MC. Development and characterization of in vivo flexible electrodes compatible with large tissue displacements. J Neural Eng. 2009; doi: 10.1088/ 1741-2560/6/2/024002.

    Google Scholar 

  49. Pellinen D, Moon T, Vetter R, Miriani R, Kipke D. Multifunctional flexible parylene-based intracortical microelectrodes. Conf Proc IEEE Eng Med Biol Soc. 2005; 5: 5272–5.

    Google Scholar 

  50. Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip. 2005; 5(5): 519–23.

    Article  Google Scholar 

  51. Kim BJ, Kuo JT, Hara SA, Lee CD, Yu L, Gutierrez CA, Hoang TQ, Pikov V, Meng E. 3D Parylene sheath neural probe for chronic recordings. J Neural Eng. 2013; doi: 10.1088/1741-2560/10/4/045002.

    Google Scholar 

  52. Lee K, Singh A, He J, Massia S, Kim B, Raupp G. Polyimide based neural implants with stiffness improvement. Sensor Actuat B-Chem. 2004; 102(1): 67–72.

    Article  Google Scholar 

  53. Rousche PJ, Pellinen DS, Pivin DP Jr, Williams JC, Vetter RJ, Kipke DR. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng. 2001; 48(3): 361–71.

    Article  Google Scholar 

  54. Takeuchi S, Suzuki T, Mabuchi K, Fujita H. 3D flexible multichannel neural probe array. J Micromech Microeng, 2004; 14(1): 104–7.

    Article  Google Scholar 

  55. Chen YY, Lai HY, Lin SH, Cho CW, Chao WH, Liao CH, Tsang S, Chen YF, Lin SY. Design and fabrication of a polyimidebased microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain. J Neurosci Methods. 2009; 182(1): 6–16.

    Article  Google Scholar 

  56. Xiang Z, Yen S-C, Xue N, Sun T, Tsang WM, Zhang S. Ultrathin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J Micromech Microeng. 2014; doi:10.1088/0960-1317/24/6/065015.

    Google Scholar 

  57. Shen W, Karumbaiah L, Liu X, Saxena T, Chen S, Patkar R, Bellamkonda RV, Allen MG. Extracellular matrix-based intracortical microelectrodes: toward a microfabricated neural interface based on natural materials. Microsystems Nanoeng. 2015; doi:10.1038/micronano.2015.10.

    Google Scholar 

  58. Altuna A, Menendez de la Prida L, Bellistri E, Gabriel G, Guimerá A, Berganzo J, Villa R, Fernández LJ. SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens Bioelectron. 2012; 37(1): 1–5.

    Article  Google Scholar 

  59. Shin H, Kim S, Chio N, Lee HJ, Yoon E-S, Cho I-J. 3D multifunctional neural probe array for mapping functional connectivities in a 3D neuron chip. Conf Proc IEEE Micro Electro Mech Syst. 2016; doi: 10.1109/MEMSYS.2016.7421625.

    Google Scholar 

  60. Lee K, He J, Clement R, Massia S, Kim B. Biocompatible benzocyclobutene (BCB)-based neural implants with microfluidic channel. Biosens Bioelectron. 2004; 20(2): 404–7.

    Article  Google Scholar 

  61. Zhu H, He J, Kim B. High-yield benzocyclobutene (BCB) based neural implants for simultaneous intra-and extracortical recording in rats. Conf Proc IEEE Eng Med Biol Soc. 2004; 6: 4341–4.

    Google Scholar 

  62. Lee SE, Jun SB, Lee HJ, Kim J, Lee SW, Im C, Shin HC, Chang JW, Kim SJ. A flexible depth probe using liquid crystal polymer. IEEE T Biomed Eng. 2012; 59(7): 2085–94.

    Article  Google Scholar 

  63. Lind G, Linsmeier CE, Thelin J, Schouenborg J. Gelatineembedded electrodes—a novel biocompatible vehicle allowing implantation of highly flexible microelectrodes. J Neural Eng. 2010; doi: 10.1088/1741-2560/7/4/046005.

    Google Scholar 

  64. Tien LW, Wu F, Tang-Schomer MD, Yoon E, Omenetto FG, Kaplan DL. Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes. Adv Funct Mater. 2013; 23(25): 3185–93.

    Article  Google Scholar 

  65. Adrega T, Lacour SP. Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J Micromech Microeng. 2010; doi:10.1088/0960-1317/20/5/055025.

    Google Scholar 

  66. Liang Guo, Guvanasen GS, Xi Liu, Tuthill C, Nichols TR, De Weerth SP. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE T Biomed Circuits Syst. 2013; 7(1): 1–10.

    Article  Google Scholar 

  67. Myllymaa S, Myllymaa K, Korhonen H, Töyräs J, Jääskeläinen JE, Djupsund K, Tanila H, Lappalainen R. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials. Biosens Bioelectron. 2009; 24(10): 3067–72.

    Article  Google Scholar 

  68. Rubehn B, Bosman C, Oostenveld R, Fries P, Stieglitz T. A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng. 2009; doi: 10.1088/1741-2560/6/3/036003.

    Google Scholar 

  69. Toda H, Suzuki T, Sawahata H, Majima K, Kamitani Y, Hasegawa I. Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. Neuroimage. 2011; 54(1): 203–12.

    Article  Google Scholar 

  70. Park DW, Schendel AA, Mikael S, Brodnick SK, Richner TJ, Ness JP, Hayat MR, Atry F, Frye ST, Pashaie R, Thongpang S, Ma Z, Williams JC. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat Commun. 2014; doi: 10.1038/ncomms6258.

    Google Scholar 

  71. Lee CJ, Oh SH, Song JK, Kim SJ. Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material. Mater Sci Eng C-Bio S. 2004; 24(1-2): 265–8.

    Article  Google Scholar 

  72. Ochoa M, Wei P, Wolley AJ, Otto KJ, Ziaie B. A hybrid PDMSParylene subdural multi-electrode array. Biomed Microdevices. 2013; 15(3): 437–43.

    Article  Google Scholar 

  73. Henle C, Hassler C, Kohler F, Schuettler M, Stieglitz T. Mechanical characterization of neural electrodes based on PDMS-parylene C-PDMS sandwiched system. Conf Proc IEEE Eng Med Biol Soc. 2011; 640–3.

    Google Scholar 

  74. Henle C, Raab M, Cordeiro JG, Doostkam S, Schulze-Bonhage A, Stieglitz T, Rickert J. First long term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology. Biomed Microdevices. 2011; 13(1): 59–68.

    Article  Google Scholar 

  75. Yamakawa T, Yamakawa T, Aou S, Ishizuka S, Suzuki M, Fujii M. Subdural electrode array manipulated by a shape memory alloy guidewire for minimally-invasive electrocorticogram recording. Conf Proc IEEE World Autom Cong. 2010; 1–6.

    Google Scholar 

  76. Yu KJ, Kuzum D, Hwang SW, Kim BH, Juul H, Kim NH, Won SM, Chiang K, Trumpis M, Richardson AG, Cheng H, Fang H, Thompson M, Bink H, Talos D, Seo KJ, Lee HN, Kang SK, Kim JH, Lee JY, Huang Y, Jensen FE, Dichter MA, Lucas TH, Viventi J, Litt B, Rogers JA. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat Mater. 2016; 15(7): 782–91.

    Article  Google Scholar 

  77. Rowland V, Macintyre WJ, Bidder TG. The production of brain lesions with electric currents. II. Bidirectional currents. J Neurosurg. 1960; 17: 55–69.

    Google Scholar 

  78. Robinson FR, Johnson MT. Histopathological studies of tissue reactions to various metals implanted in cat brains. ASD Tech Rep. 1961; 61(397): 13.

    Google Scholar 

  79. Bates JI, Reiners CR, Horn RC. A discussion of the uses of metals in surgery and an experimental study of the use of zirconium. Surg Gynecol Obstet. 1948; 87(2): 213–20.

    Google Scholar 

  80. Beder OE, Eade G. An investigation of tissue tolerance to titanium metal implants in dogs. Surgery. 1956; 39(3): 470–3.

    Google Scholar 

  81. Clarke EGC. Discussion on metals and synthetic materials in relation to tissues. P Roy Soc Med. 1953; 46(8): 641–52.

    Google Scholar 

  82. Cooper R, Crow HJ. Toxic effects of intra-cerebral electrodes. Med Biol Eng. 1966; 4(6): 575–81.

    Article  Google Scholar 

  83. Bickford RG, Fischer G, Sayre GP. Histologic changes in the cats brain after introduction of metallic and plastic coated wire used in electro-encephalography. P Staff M Mayo Clin. 1957; 32(1): 14–21.

    Google Scholar 

  84. Babb TL, Kupfer W. Phagocytic and metabolic reactions to chronically implanted metal brain electrodes. Exp Neurol. 1984; 86(2): 171–82.

    Article  Google Scholar 

  85. Loeb GE, Richmond FJR. BION implants for therapeutic and functional electrical stimulation. In: Chapin JK, Moxon KA, editors. Neural prostheses for restoration of sensory and motor function. Boca Raton: CRC Press; 2000. pp. 75–98.

    Google Scholar 

  86. Patan MK. Titanium nitride as an electrode material for high charge density applications. PhD Dissertation, New Jersey, New Jersey Institute of Technology. 2007.

    Google Scholar 

  87. Mohanan P, Rathinam K. Biocompatibility studies on silicone rubber. Conf Proc IEEE Eng Med Biol Soc. 1995; doi: 10.1109/ RCEMBS.1995.533005.

    Google Scholar 

  88. Agnew WF, McCreery DB. Neural prostheses: fundamental studies. Englewood Cliffs: Prentice Hall; 1990.

    Google Scholar 

  89. Schmidt S, Horch K, Normann R. Biocompatibility of siliconbased electrode arrays implanted in feline cortical tissue. J Biomed Mater Res. 1993; 27(11): 1393–9.

    Article  Google Scholar 

  90. Voskerician G, Shive MS, Shawgo RS, von Recum H, Anderson JM, Cima MJ, Langer R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials. 2003; 24(11): 1959–67.

    Article  Google Scholar 

  91. Brazier MA. Recordings from large electrodes. Methods Med Res. 1961; 9: 405–32.

    Google Scholar 

  92. Seymour JP, Kipke DR. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials. 2007; 28(25): 3594–607.

    Article  Google Scholar 

  93. Kotzar G, Freas M, Abel P, Fleischman A, Roy S, Zorman C, Moran JM, Melzak J. Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials. 2002; 23(13): 2737–50.

    Article  Google Scholar 

  94. Lee SW, Seo JM, Ha S, Kim ET, Chung H, Kim SJ. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest Ophth Vis Sci. 2009; 50(12): 5859–66.

    Article  Google Scholar 

  95. Matthews R, McDonald NJ, Anumula H, Woodward J, Turner PJ, Steindorf MA, Chang K, Pendleton JM. Novel hybrid bioelectrodes for ambulatory zero-prep EEG measurements using multi-channel wireless EEG system, Lect Notes Artif Int. 2007; doi: 10.1007/978-3-540-73216-7_16.

  96. Lee SB, Lee B, Kiani M, Mahmoudi B, Gross R, Ghovanloo M. An inductively-powered wireless neural recording system with a charge sampling analog front-end. IEEE Sens J. 2016; 16(2): 475–84.

    Article  Google Scholar 

  97. Rhew H-G, Jeong J, Fredenburg JA, Dodani S, Patil PG, Flynn MP. A fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management. IEEE J Solid-St Circ. 2014; 49(10): 2213–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Mo Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, C., Seo, JM. A review of electrodes for the electrical brain signal recording. Biomed. Eng. Lett. 6, 104–112 (2016). https://doi.org/10.1007/s13534-016-0235-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-016-0235-1

Keywords

Navigation