Skip to main content
Log in

Obliquely Propagating Electron Acoustic Shock Waves in Magnetized Plasma

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Obliquely propagating electron acoustic shock waves in plasma with stationary ions, cold and superthermal hot electrons are investigated in magnetized plasma. Employing reductive perturbation method, Korteweg-de Vries-Burgers equation (KdVB) is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdVB equation show the variation of shock waves structure (amplitude, velocity, and width) with different plasma parameters. Particle density (α), superthermal parameter (κ), electron temperature ratio (𝜃), kinetic viscosity (η0), obliqueness (kz), and strength of magnetic field (ωc) significantly modify the properties of the shock waves structures. The present investigation is useful to understand dissipative structures observed in space or laboratory plasma where multielectrons population with superthermal electrons are prevalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.D. Fried, R.W. Gould, Phys. Fluids. 4, 139–147 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Derfler, T.C. Simonen, Phys. Fluids. 12, 269–278 (1969)

    Article  ADS  Google Scholar 

  3. D. Henry, J.P. Treguier, J. Plasma Phys. 8, 311 (1972)

    Article  ADS  Google Scholar 

  4. K. Watanabe, T. Taniuti, J. Phys. Soc. Jpn. 43, 1819 (1977)

    Article  ADS  Google Scholar 

  5. R.L. Tokar, S.P. Gary, Geophys. Res. Lett. 11, 1180 (1984)

    Article  ADS  Google Scholar 

  6. S.P. Gary, R.L. Tokar, Phys. Fluids. 28, 2439 (1985)

    Article  ADS  Google Scholar 

  7. R.L. Mace, M.A. Helberg, Phys. Plasmas. 43, 239 (1990)

    Article  Google Scholar 

  8. S. Ikezawa, Y. Nakamura, J. Phys. Soc. Japan. 50, 962–967 (1981)

    Article  ADS  Google Scholar 

  9. M.F. Thomsen, H.C. Barr, S.P. Gary, W.C. Feldman, T.E. Cole, Geophys. Res. Lett. 88, 11 (1983)

    Google Scholar 

  10. W.C. Feldman, R.C. Anderson, S.J. Bame, S.P. Gary, J.T. Gosling, D.J. Mc Comas, M.F. Thomsen, G. Paschmann, M.M. Hoppe, Geophys. Res. Lett. 88, 15 (1983)

    Google Scholar 

  11. S.D. Bale, P.J. Kellogg, D.E. Larson, R.P. Lin, K. Goetz, R.P. Lepping, Geophys. Res. Lett. 25, 2929 (1983)

    Article  ADS  Google Scholar 

  12. G.S. Lakhina, S.V. Singh, A.P. Kakad, F. Verheest, R. Bharuthram, Nonlin. Processes Geophys. 15, 903–913 (2008)

    Article  ADS  Google Scholar 

  13. S.V. Singh, G.S. Lakhina, Planet. Space Sci. 49, 107–114 (2001)

    Article  ADS  Google Scholar 

  14. D. Schriver, M. Ashour Abdalla, Geophys. Res. Lett. 20, 475 (1993)

    Article  ADS  Google Scholar 

  15. N. Dubouloz, R. Pottelete, M. Malingre, R.A. Treumann, Geophys. Res. Lett. 18, 155 (1991)

    Article  ADS  Google Scholar 

  16. N. Dubouloz, R.A. Treumann, R. Pottelete, M. Malingre, Geophys. Res. Lett. 98, 17 (1993)

    Article  Google Scholar 

  17. R. Pottelette, R.E. Ergun, R.A. Treumann, M. Berthomier, C.W. Carlson, J.P. McFadden, I. Roth, Geophys. Res. Lett. 26, 2629 (1999)

    Article  ADS  Google Scholar 

  18. G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J.C. Cain, Astron. Astrophys. Suppl Ser. 92, 267 (1992)

    ADS  Google Scholar 

  19. E.E. Antonova, N.O. Ermakova, Adv. Space Res. 42, 987 (2008)

    Article  ADS  Google Scholar 

  20. V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968)

    Article  ADS  Google Scholar 

  21. T.S. Gill, A. Bains, C. Bedi, Phys. Plasmas. 17, 013701 (2010)

    Article  ADS  Google Scholar 

  22. S. Sultana, I. Kourakis, M.A. Hellberg, Plasma Phys. Contr. Fusion. 54, 105016 (2012)

    Article  ADS  Google Scholar 

  23. S. Bansal, M. Aggarwal, T.S. Gill, Brazilian J. Phys. https://doi.org/10.1007/s13538-018-0602-8 (2018)

  24. S. Bansal, M. Aggarwal, T.S. Gill, J. Astrophys. Astron. 39, 27 (2018)

    Article  ADS  Google Scholar 

  25. W. Moslem, S. Sabry, Chaos, Solitons and Fractals. 36, 3 (2008)

    Article  Google Scholar 

  26. W. Masood, N. Imtiaz, M. Siddiq, Phys. Scr. 80, 015501 (2009)

    Article  ADS  Google Scholar 

  27. T.S. Gill, A. Bains, C. Bedi, J. Phys. Conf. Ser. 208, 012040 (2010)

    Article  Google Scholar 

  28. K. Javidan, H.R. Pakzad, Indian J. Phys. 87, 83 (2012)

    Article  ADS  Google Scholar 

  29. B. Sahu, M. Tribeche, Phys. Plasmas. 19, 022304 (2012)

    Article  ADS  Google Scholar 

  30. A.P. Misra, B. Sahu, Physica A. 421, 269 (2014)

    Article  ADS  Google Scholar 

  31. M. Ferdousi, M.R. Miah, S. Sultana, A.A. Mamun, Brazilian J. Phys. 45, 244 (2015)

    Article  ADS  Google Scholar 

  32. M.A. Hossen, M.M. Rahman, M.R. Hossen, A.A. Mamun, Brazilian J. Phys. 45, 444 (2015)

    Article  ADS  Google Scholar 

  33. M. Dutta, N. Chakrabarti, R. Roychoudhury, M. Khan, Phys. Plasmas. 18, 102301 (2011)

    Article  ADS  Google Scholar 

  34. S. Sultana, I. Kourakis, Eur. Phys. J D. 66, 100 (2012)

    Article  ADS  Google Scholar 

  35. A. Panwar, C.M. Ryu, A. Bains, Phys. Plasmas. 21, 122105 (2014)

    Article  ADS  Google Scholar 

  36. M. Shalaby, S.K. El-Labany, R. Sabry, L.S. El-sherif, Phys. Plasmas. 18, 062305 (2011)

    Article  ADS  Google Scholar 

  37. M. Berthomier, R. Pottelette, M. Malingre, Y. Khotyaintsev, Phys. Plasmas. 7, 2987 (2000)

    Article  ADS  Google Scholar 

  38. T.K. Baluku, M.A. Helberg, Phys. Plasmas. 15, 123705 (2008)

    Article  ADS  Google Scholar 

  39. W. Malfliet, J. Computt. Appl. Math. 164, 529–541 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  40. I. Kourakis, S. Sultana, F. Verheest, Astrophys. Space Sci. 338, 245 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors Sona Bansal and Munish Aggarwal are thankful to Punjab Technical University, Kapurthala (India), for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sona Bansal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, S., Aggarwal, M. & Gill, T.S. Obliquely Propagating Electron Acoustic Shock Waves in Magnetized Plasma. Braz J Phys 48, 597–603 (2018). https://doi.org/10.1007/s13538-018-0609-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0609-1

Keywords

Navigation