Skip to main content
Log in

Design and Analysis of All-Optical Isolator Based on Linear Photonic Crystal

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In essence of fundamental challenges faced by optical industry, it is quite arduous to achieve all optical isolator. It has become urgent for optical communication to meet the demand of fast-moving digital world. A new T-shaped design of an all-optical isolator, based on square lattice (rods in air) of two-dimensional photonic crystal (PhC) structure, has been proposed. The proposed isolator operates on the principle of optical beam interference within the waveguides. The bias signal is capable to make the device function as an all-optical isolator by interfering with signals coming from input as well as output ports. The performance of the projected device has been analyzed and several performance metrics have been calculated. Plane wave expansion (PWE) and finite difference time domain (FDTD) methods have been used to calculate the band structure and to analyze the device performances by observing electric field distribution, respectively. The simulation results show the high contrast ratio of ~ 10 dB at worst case scenario. Owing to its simple with ultra-compact footprint (131 µm2) and high contrast ratio altogether make the device practicable for future generation on chip photonic integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  2. A. Vahdat, H. Liu, X. Zhao, C. Johnson, The emerging optical data center, Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, paper OTuH2 (2011)

  3. S. Minardi, R.J. Harris, L. Labadie, Astro-photonics: Astronomy and modern optics, Astron. Astrophys. Rev. 29(6), (2021)

  4. P.B. Reid, W. Davis, D.A. Schwartz, S. T-McKinstry, R.H.T Wilke, Technology challenges of active x-ray optics for astronomy, Proc. SPIE 7803, Adaptive X-Ray Optics, 7803(78030I), (2010)

  5. C.V. Poulton, M.J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, M.R. Watts, Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019)

    Article  Google Scholar 

  6. C. Rablau, LIDAR – A new (self-driving) vehicle for introducing optics to broader engineering and non-engineering audiences, Fifteenth Conference on Education and Training in Optics and Photonics, 11143(138), (2019)

  7. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  8. M.A. Baqir, A. Farmani, T. Fatima, M.R. Raza, S.F. Shaukat, A. Mir, Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 7(31), 9447–9454 (2018)

    Article  ADS  Google Scholar 

  9. A. Alipore, A. Farmani, A. Mir, High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens. J. 18(17), 7047–7054 (2018)

    Article  ADS  Google Scholar 

  10. G.D. Hutcheson, Moore’s law, lithography, and how optics drive the semiconductor industry, Proc. SPIE, Extreme Ultraviolet (EUV) Lithography IX, 10583(03), (2018)

  11. H. Radamson, L. Thylén, Chapter 4 - Moore’s law for photonics and electronics, Monolithic nanoscale photonics–electronics integration in silicon and other group IV elements, pp. 121–150 (2015)

  12. C. Xue, W. Dengkui, W. Tuo et al., Enhanced photoresponsivity of a GaAs nanowire metal-semiconductor-metal photodetector by adjusting the fermi level. ACS Appl. Mater. Interfaces 11(36), 33188–33193 (2019)

    Article  Google Scholar 

  13. H. Li, J. Tang, Y. Kang, et al., Optical properties of quasi-type-II structure in GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires, Appl. Phys. Lett. 113, 233104 (2018)

  14. X. Zhang, Y. Tang, F. Zhang, C. Lee, A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016)

    Article  Google Scholar 

  15. X. Xu, M. Nieto-Vesperinas, Azimuthal imaginary Poynting momentum density, Phys. Rev. Lett. 123, 233902 (2019)

  16. Shun Lien Chuang, Physics of Photonic Devices, 2nd Edition, Wiley, ISBN: 978-0-470-29319-5, January (2009)

  17. F. Parandin, M. M Karkhanehchi, M. Naseri A. Zahedi, Design of a high bitrate optical decoder based on photonic crystals, J. Comput. Electron. 17(2), (2018)

  18. H. A. Banaei, M. G. Rabati, P. A Badelbou F. Mehdizadeh, Effect of self-collimated beams on the operation of photonic crystal decoders, J. Electromagn. Waves. Appl. 30(11), 1440–1448 (2016)

  19. K. Goswami, H. Mondal, M. Sen, Optimized design of 60° bend in optical waveguide for efficient power transfer, In: Bera R., Pradhan P.C., Liu CM., Dhar S., Sur S.N. (eds) Advances in Communication, Devices and Networking, Lecture Notes in Electrical Engineering 662, Springer, (2020)

  20. A. Farmani, A. Mir, M. Irannejad, 2D-FDTD simulation of ultra-compact multifunctional logic gates with nonlinear photonic crystal. J. Opt. Soc. Am. B. 36(4), 811–818 (2019)

    Article  ADS  Google Scholar 

  21. M.J. Maleki, A. Mir, M. Soroosh, Ultra-fast all-optical full-adder based on nonlinear photonic crystal resonant cavities. Photon. NetwCommun. 41, 93–101 (2021)

    Google Scholar 

  22. H.P. Mondal, M. Sen, C. Prakash, K. Goswami, C. Sarma, Impedance matching theory to design all-optical AND gate. IET Optoelectron. 12(4), 244–248 (2018)

    Article  Google Scholar 

  23. K. Goswami, H.P. Mondal, P. Das, A. Thakuria, Realization of ultra-compact all-optical logic AND gate based on photonic crystal waveguide, ICCDN 2021. Lect. Notes Electr. Eng. 776, 61–68 (2022)

    Article  Google Scholar 

  24. H.P. Mondal, S. Chanda, P. Gogoi, Realization of all-optical logic AND gate using dual ring resonator, IEEE international conference on automatic control and dynamic optimization technique (ICACDOT-2016), 553–556 (2016)

  25. H.P. Mondal, S. Chanda, M. Sen, T. Datta, All-optical AND gate based on silicon photonic crystal, IEEE International Conference on Microwave and Photonics, Indian School of Mines, Dhanbad, Jharkhand, 1–2 (2015)

  26. H.P. Mondal, K. Goswami, M. Sen, C. Prakash, An all-optical ultra-compact 4-channel wavelength de-multiplexer, IEEE International Conference on Microwave and Photonics, Indian School of Mines, Dhanbad, Jharkhand, (2018)

  27. D. Gogoi, K. Das, H. P. Mondal, P. Talukdar, K. Hussain, Design of ultra-compact 3-channel wavelength de-multiplexer based on photonic crystal, IEEE international conference on automatic control and dynamic optimization technique (ICACDOT-2016), I2IT, Pune, Maharashtra, (2016)

  28. M.J. Maleki, M. Soroosh, A. Mir, Improving the performance of 2-to-4 optical decoders based on photonic crystal structures, Crystals 9 (12), 2019

  29. T. Daghooghi, M. Soroosh, K. Ansari-Asl, Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators. Appl. Opt. 57, 2250–2257 (2018)

    Article  ADS  Google Scholar 

  30. H.P. Mondal, M. Sen, K. Goswami, Design and analysis of all-optical 1-to-2-line decoder based on linear photonic crystal. IET Optoelectron. 13(4), 191–195 (2019)

    Article  Google Scholar 

  31. F. Mehdizadeh, M. Soroosh, H.A. Banaei, A novel proposal for optical decoder switch based on photonic crystal ring resonators, Opt. Quantum Electron. 48(20), (2016)

  32. T. Daghooghi, M. Soroosh, K. Ansari-Asl, A low-power all optical decoder based on photonic crystal nonlinear ring resonators. Optik 174, 400–408 (2018)

    Article  ADS  Google Scholar 

  33. A. Sharma, K. Goswami, H. Mondal et al., A review on photonic crystal based all-optical logic decoder: linear and nonlinear perspectives. Opt. Quant. Electron. 54, 90 (2022)

    Article  Google Scholar 

  34. H.P. Mondal, M. Sen, K. Goswami, Design, and analysis of a 0.9Tb/s 6-channel WDM filter based on photonic crystal waveguides, J. Opt. Soc. Am. B. 36(11), 3181–3188 (2019)

  35. C. Prakash, M. Sen, H.P. Mondal, K. Goswami, Design and optimization of a slotted-PhC waveguide based TE-pass polarization filter. J. Opt. Soc. Am. B. 35(8), 1791–1798 (2018)

    Article  ADS  Google Scholar 

  36. C. Prakash, H.P. Mondal, K. Goswami, M. Sen, Investigation for the efficient interface of strip and PhC Slot waveguide, IEEE International Conference on Microwave and Photonics, Indian School of Mines, Dhanbad, Jharkhand, (2018)

  37. R.R. Ghosh, T. Datta, H.P. Mondal, M. Sen, Efficient TE-pass polarizer based on photonic crystal slot waveguide, International Conference on Opto-Electronics and Photonic Materials, SASTRA University, Thanjavur, Tamilnadu, (2015)

  38. K. Goswami, H.P. Mondal, M. Sen, A review on all-optical logic adder: Heading towards next-generation processor, Opt. Commun. 483, 126668 (2020)

  39. M.M. Karkhanehchi, F. Parandin, A. Zahedi, Design of an all-optical half-adder based on 2D photonic crystals. Photon. Netw. Commun. 33, 159–165 (2017)

    Article  Google Scholar 

  40. S. Serajmohammadi, H.A. Banaei, F. Mehdizadeh, Proposal for realizing an all-optical half adder based on photonic crystals. Appl. Opt. 57, 1617–1621 (2018)

    Article  ADS  Google Scholar 

  41. F. Parandin, M.R. Malmir, M. Naseri, All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals. Superlattices Microstruct. 109, 437–441 (2017)

    Article  ADS  Google Scholar 

  42. C.R. Doerr, N. Dupuis, L. Zhang, Optical isolator using two tandem phase modulators. Opt. Lett. 36(21), 4293–4295 (2011)

    Article  ADS  Google Scholar 

  43. S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, M. Xiao, Demonstration of a chip-based optical isolator with parametric amplification. Nature Communication 7, 13657 (2016)

    Article  ADS  Google Scholar 

  44. J. Fujita, M. Levy, R.M. Osgood Jr., Waveguide optical isolator based on Mach–Zehnder interferometer, Appl. Phys. Lett. 76(16), (2000)

  45. O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dotsch, P. Hertel, A.F. Popkov, Analysis of polarization independent Mach-Zehnder-type integrated optical isolator. J. Lightwave Technol. 17(7), 1200–1205 (1999)

    Article  ADS  Google Scholar 

  46. P.K. Sahoo, J. Joseph, Optical diode using nonlinear polystyrene ring resonators in two-dimensional photonic crystal structure. Appl. Opt. 52, 8252–8257 (2013)

    Article  ADS  Google Scholar 

  47. E.N. Bulgakov, A.F. Sadreev, All-optical diode based on dipole modes of Kerr microcavity in asymmetric L-shaped photonic crystal waveguide. Opt. Lett. 39(7), 1787–1790 (2014)

    Article  ADS  Google Scholar 

  48. A. Rostami, Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators. Opt. Laser Technol. 39(5), 1059–1065 (2007)

    Article  ADS  Google Scholar 

  49. C. Wang, C.-Z. Zhou, Z.-Y. Li, On-chip optical diode based on silicon photonic crystal heterojunctions. Optical Express 19(27), 26948–26955 (2011)

    Article  ADS  Google Scholar 

  50. E. Shaik, N. Rangaswamy, Implementation of photonic crystal based all optical half adder using T-shaped waveguides, Second International Conference on Computing and Communications Technologies, India, 148–150 (2017)

  51. S.G. Johnson, J.D. Joannopoulos, Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2001)

    Article  ADS  Google Scholar 

  52. W.P. Huang, S.T. Chu, S.K. Chaudhuri, A semi-vectorial finite-difference time-domain method (optical guided structure simulation). IEEE Photonics Technol. Lett. 3(9), 803–806 (1991)

    Article  ADS  Google Scholar 

  53. C.R. Doerr, N. Dupuis, L. Zhang, Optical isolator using two tandem phase modulators, Opt. Lett. 36(21), (2011)

  54. Y. Kawaguchi, M. Li, K. Chen, V. Menon, et al., Optical isolator based on chiral light-matter interactions in a ring resonator integrating a dichroic magneto-optical material, Appl. Phys. Lett. (2021)

  55. D.D. Solnyshkov, O. Bleu, G. Malpuech, Topological optical isolator based on polariton graphene, Appl. Phys. Lett. 112, (2018)

  56. B. Liu, Y. Liu, S. Li, X. He, High efficiency all-optical diode based on photonic crystal waveguide. Opt. Commun. 368, 7–11 (2016)

    Article  ADS  Google Scholar 

  57. S. Feng, C. Ren, W. Wang, Y. Wang, All-optical diode based on the self-collimation characteristics of the near-infrared photonic crystal heterojunctions, EPL, (2012)

  58. P. Bienstman, S. Assefa, S.G. Johnson, J.D. Joannopoulos, G.S. Petrich, L.A. Kolodziejski, Taper structures for coupling into photonic crystal slab waveguides. J. Opt. Soc. Am. B. 20(9), 1817–1821 (2003)

    Article  ADS  Google Scholar 

  59. S. Assefa, P.T. Rakich, P. Bienstman, S.G. Johnson, G.S. Petrich, J.D. Joannopoulos, L.A. Kolodziejski, E.P. Ippen, Henry I. Smith, Guiding 1.5 µm light in photonic crystals based on dielectric rods, Appl. Phys. Lett. 85(25), (2004)

  60. T-M. Shih, A. Kurs, M. Dahlem, G. Petrich, M. Soljačić, E. Ippen, L. Kolodziejski, K. Hall, M. Kesler, Supercollimation in photonic crystals composed of silicon rods, Appl. Phys. Lett. 93(13), (2008)

  61. A.A.M. Kok, C.M. Heesch, van, E.J. Geluk, M.J.H. Sander - Jochem, J.J.G.M. Tol, van der, Y.S. Oei, M.K. Smit, Two-dimensional photonic crystals based on InP rods, proc. CNM Research Day, Eindhoven, conference, CNM Research Day, (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haraprasad Mondal or Mrinal Sen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, K., Mondal, H., Sen, M. et al. Design and Analysis of All-Optical Isolator Based on Linear Photonic Crystal. Braz J Phys 52, 78 (2022). https://doi.org/10.1007/s13538-022-01086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01086-8

Keywords

Navigation