Skip to main content
Log in

Studies on the Dust Acoustic Shock, Solitary, and Periodic Waves in an Unmagnetized Viscous Dusty Plasma with Two-Temperature Ions

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The non-linear propagation of dust acoustic wave (DAW) in collisionless, unmagnetized, viscous dusty plasma containing electrons with Maxwell-Boltzmann distribution, two-temperature ions, and highly negatively charged dust grains, are investigated through the fabric of the Kadomtsev-Petviashvili-Burgers (KPb) equation. Following the approach of the reductive perturbation technique (RPT), the KPb equation is constructed from the governing equation, and further, utilizing traveling wave transformation, the KPb equation is converted into an ordinary differential equation (ODE). Analyzing phase portraits for the KPb system varying different plasma parameters, it is found that the KPb system includes shock, solitary as well as periodic solutions. But, in case of lack of Burgers term, the system only provides the solitary and periodic solutions which are directly generated from the KP equation, and further, a shock solution of the KPb equation is derived by applying the \((G'/G)\)-expansion method. Introducing the indirect F-function method and incorporating a Jacobi elliptic function, a finite-amplitude periodic solution for the KPb equation is also constructed. Finally, the impacts of the physical parameters on wave propagation in the present system are illustrated from a numerical standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

This paper does not include any data.

Code Availability

Matlab codes for depicting the figures are accessible.

References

  1. H.R. Miller, P.J. Witter, Active Galactic Nuclei, (Berlin: Springer) 202 (1987)

  2. A.V. Gurevich, Y. Istomin, Physics of the Pulsar Magnetosphere (Cambridge University Press), Cambridge, 1993)

    MATH  Google Scholar 

  3. P. Goldreich, W.H. Julian, Pulsar electrodynamics. Astrophys. J. 157 (1969)

  4. F.C. Michel, Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 1 (1982)

    ADS  Google Scholar 

  5. E. Tandberg-Hansen, A.G. Emslie, vol. 14 (Cambridge, 1988)

  6. P. Goldreich, W.H. Julian, Pulsar electrodynamics. Astrophys. J. 157, 869 (1969)

    ADS  Google Scholar 

  7. C.K. Goertz, Dusty plasmas in the solar system. Rev. Geophys. 27(2), 271–292 (1989)

    ADS  Google Scholar 

  8. O. Havens, F. Melandso, T.K. Aslaksen, T. Nitter, Collisionless braking of dust particles in the electrostatic field of planetary dust rings. Phys. Scr. 45(5), 491–496 (1992)

    ADS  Google Scholar 

  9. E.C. Whipple, T.G. Northrop, D.A. Mendis, The electrostatics of a dusty plasma. J. Geophys. Res. 90(A8), 7405–7413 (1985)

    ADS  Google Scholar 

  10. J.H. Chu, J.B. Du, I. Lin, Coulomb solids and low-frequency fluctuations in RF dusty plasmas. Phys. D: Appl. Phys 27(2), 296 (1994)

    ADS  Google Scholar 

  11. A. Barkan, R.L. Merlino, N. D’Angelo, Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2(10), 3563–3565 (1995)

    ADS  Google Scholar 

  12. J.B. Pieper, J. Goree, Dispersion of plasma dust acoustic waves in the strong-coupling regime. Phys. Rev. Lett. 77(15), 3137–3140 (1996)

    ADS  Google Scholar 

  13. H.R. Prabhakara, V.L. Tanna, Trapping of dust and dust acoustic waves in laboratory plasmas. Phys. Plasmas 3(8), 3176–3181 (1996)

    ADS  Google Scholar 

  14. N.N. Rao, P.K. Shukla, Yu. Yu, M., Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38(4), 543–546 (1990)

  15. F. Verheest, Nonlinear dust-acoustic waves in multispecies dusty plasmas. Planet. Space Sci. 40(1), 1–6 (1992)

    ADS  Google Scholar 

  16. P.K. Shukla, V.P. Silin, Dust ion-acoustic wave. Phys. Scr. 45(5), 508 (1992)

    ADS  Google Scholar 

  17. F. Melandso, Lattice waves in dust plasma crystals. Phys. Plasmas 3(11), 3890–3901 (1996)

    ADS  Google Scholar 

  18. F. Verheest, Waves and instabilities in dusty space plasmas. Space Sci. Rev. 77(3–4), 267–302 (1996)

    ADS  Google Scholar 

  19. P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics, 1st edn. (IOP, London, 2002)

    Google Scholar 

  20. R.L. Merlino, 25 years of dust acoustic waves. J. Plasma Phys. 80(06), 773–786 (2014)

    ADS  Google Scholar 

  21. P.K. Shukla, Dust acoustic wave in a thermal dusty plasma. Phys. Rev. E 61(6), 7249–7251 (2000)

    ADS  Google Scholar 

  22. A.A. Mamun, R.A. Cairns, P.K. Shukla, Solitary potentials in dusty plasmas. Phys. Plasmas 3(2), 702–704 (1996)

    ADS  MathSciNet  Google Scholar 

  23. M. Rosenberg, G. Kalman, Dust acoustic waves in a strongly coupled dusty plasmas. Phys. Rev. E 56(6), 7166–7173 (1997)

    ADS  Google Scholar 

  24. M. Lin, W. Duan, Dust acoustic solitary waves in a dusty plasmas with nonthermal ions. Chaos, Solitons Fractals 33(4), 1189–1196 (2007)

    ADS  MATH  Google Scholar 

  25. M. Lin, W. Duan, The Kadomtsev-Petviashvili (KP), MKP, and coupled KP equations for two-ion-temperature dusty plasmas. Chaos, Solitons Fractals 23(3), 929–937 (2005)

    ADS  MATH  Google Scholar 

  26. N.S. Saini, N. Kaur, T.S. Gill, Dust acoustic solitary waves of Kadomstev-Petviashvili (KP) equation in superthermal dusty plasma. Adv. Space Res. 55(12), 2873–2882 (2015)

    ADS  Google Scholar 

  27. D. Xiao, J.X. Ma, Y. Li, Dust-acoustic shock waves: effect of plasma density gradient. Phys. Plasmas 12(5), 052314–6 (2005)

    ADS  Google Scholar 

  28. S. Ghosh, Z. Ehsan, G. Murtaza, Dust acoustic shock wave in electronegative dusty plasma: roles of weak magnetic field. Phys. Plasmas 15(2), 023701 (2008)

  29. I. Tasnim, M.M. Masud, M.G.M. Anowar, A.A. Mamun, Dust-acoustic shockwaves in nonthermal dusty plasmas with two population ions. IEEE Trans. Plasma Sci. 43(7), 2187–2194 (2015)

    ADS  Google Scholar 

  30. M. Khalid, S.A. El-Tantawy, A.U. Rahman, Oblique ion acoustic excitations in a magnetoplasma having \(\kappa\)-deformed Kaniadakis distributed electrons. Astrophys. Space Sci. 365(4), 1–9 (2020)

  31. M. Khalid, A.U. Rahman, A. Althobaiti, S.K. Elagan, S.A. Alkhateeb, E.A. Elghmaz, S.A. El-Tantawy, Linear and nonlinear electrostatic excitations and their stability in a nonextensive anisotropic magnetoplasma. Symmetry 13(11), 2232 (2021)

  32. M. Khalid, M. Khan, A.U. Rahman, M. Irshad, Ion acoustic solitary waves in magnetized anisotropic nonextensive plasmas. Zeitschrift für Naturforschung A 77(2), 125–130 (2022)

    ADS  Google Scholar 

  33. M. Khalid, A. Kabir, M. Irshad, Ion-scale solitary waves in magnetoplasma with nonthermal electrons. Europhys. Lett. 138(5) (2022)

  34. M. Khalid, F. Hadi, A.U. Rahman, Modulation of multi-dimensional waves in anisotropic magnetized plasma. The European Physical Journal Plus 136(10), 1–11 (2021)

    Google Scholar 

  35. A.U. Rahman, M. Khalid, A. Zeb, Compressive and rarefactive ion acoustic nonlinear periodic waves in nonthermal plasmas. Braz. J. Phys. 49(5), 726–733 (2019)

    ADS  Google Scholar 

  36. M. Khalid, F. Hadi, A.U. Rahman, Ion-scale cnoidal waves in a magnetized anisotropic superthermal plasma. J. Phys. Soc. Jpn. 88(11)(2019)

    ADS  Google Scholar 

  37. M. Khalid, A.U. Rahman, Ion acoustic cnoidal waves in a magnetized plasma in the presence of ion pressure anisotropy. Astrophys. Space Sci. 364(2), 1–7 (2019)

    ADS  MathSciNet  Google Scholar 

  38. D. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics, Mathematical Surveys and Monographs, American Mathematical Society 188, Providence Rhode Island (2013)

  39. A.N. Dev, M.K. Deka, J. Sarma, D. Saikia, N.C. Adhikary, K-P-Burgers equation in negative ion-rich relativistic dusty plasma including the effect of kinematic viscosity. Chin. Phys. B 25(10), 105202–7 (2016)

    ADS  Google Scholar 

  40. M.S. Janaki, B.K. Som, B. Dasgupta, M.R. Gupta, K-P Burgers equation for the decay of solitary magnetosonic waves propagating obliquely in a warm collisional plasma. J. Phys. Soc. Jpn. 60(9), 2977–2984 (1991)

    ADS  Google Scholar 

  41. J.K. Xue, Kadomtsev-Petviashvili (KP) Burgers equation in a dusty plasmas with non-adiabatic dust charge fluctuation. Eur. Phys. J. D 26(2), 211–214 (2003)

    ADS  MathSciNet  Google Scholar 

  42. A.N. Dev, J. Sarma, M.K. Deka, A.P. Misra, N.C. Adhikary, Kadomtsev-Petviashvili (KP) Burgers equation in dusty negative ion plasmas: evolution of dust-ion acoustic shocks. Commun. Theor. Phys. 62(6), 875–880 (2014)

    MathSciNet  MATH  Google Scholar 

  43. L.-P. Zhang, J.-K. Xue, L.-H. Yuan, The 3+1 dimensional Kadomtsev-Petviashvili Burgers’ equation in non-uniform dusty plasmas. Phys. Scr. 83(4), 045501–5 (2011)

    ADS  MATH  Google Scholar 

  44. S.A. Shan, N. Akhtar, S. Ali, KP Burgers shocks in a warm electronegative plasma with q-nonextensive distributed electrons. Astrophys. Space Sci. 351(1), 181–190 (2014)

    ADS  Google Scholar 

  45. R. Hirota, Exact envelope soliton solutions of a nonlinear wave equation. J. Math. Phys. 14(7), 805–810 (1973)

    ADS  MathSciNet  MATH  Google Scholar 

  46. M.A. Ablowitz, P.A. Clarkson, Solitons (Cambridge University, Cambridge, Nonlinear Evolution Equations and Inverse Scattering, 1991)

    MATH  Google Scholar 

  47. A.M. Wazwaz, Multiple-soliton solutions for the Lax-Kadomtsev-Petviashvili (Lax-KP) equation. Appl. Math. Comput. 201(1–2), 168–174 (2008)

    MathSciNet  MATH  Google Scholar 

  48. M.L. Wang, X.Z. Li, J.L. Zhang, The \(G^{\prime }/G\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)

  49. A. Bekir, Application of the \((G^{\prime }/G)\)-expansion method for nonlinear evolution equations. Phys. Lett. A 372(19), 3400–3406 (2008)

  50. J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations. Chaos Solitons & Fractals 30(3), 700–708 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  51. G. Ullah, M. Saleem, M. Khan, M. Khalid, A.U. Rahman, S. Nabi, Ion acoustic solitary waves in magnetized electron-positron-ion plasmas with Tsallis distributed electrons. Contrib. Plasma Phys. 60(10)(2020)

    Google Scholar 

  52. R. Bharuthram, P.K. Shukla, Large amplitude ion-acoustic solitons in a dusty plasma. Planet Space Sci 40, 973 (1992)

    ADS  Google Scholar 

  53. Y. Nakamura, A. Sarma, Observation of ion-acoustic solitary waves in a dusty plasma. Phys Plasmas 8, 3921 (2001)

    ADS  Google Scholar 

  54. S. Roy, R.R. Kairi, S. Raut, Cylindrical and spherical dust-ion-acoustic shock solitary waves by Korteweg-de Vries-Burgers equation. Braz. J. Phys. 51(6), 1651–1660 (2021)

    ADS  Google Scholar 

  55. S. Roy, S. Raut, R.R. Kairi, Nonlinear analysis of the ion-acoustic solitary and shock wave solutions for non-extensive dusty plasma in the framework of modified Korteweg-de Vries-Burgers equation. Pramana 96(2), 1–13 (2022)

    Google Scholar 

  56. R. Jahangir, S. Ali, Nonplanar ion-acoustic solitons and shocks with superthermal trapped electrons and transverse perturbations. Plasma Phys. Controlled Fusion 64(2022)

  57. W.S. Duan, K.P. Lu, J.B. Zhao, Hot dust acoustic solitary waves in dust plasma with variable dust charge. Chin. Phys. Lett. 18(8), 1088 (2001)

  58. P.K. Shukla, A.A. Mamun, Introduction to dusty plasma. Bristol, UK: IOP, Publishing, (2002)

  59. E. Yomba, Jacobi elliptic function solutions of the generalized Zakharov-Kuznetsov equation with nonlinear dispersion and t-dependent coefficients. Phys. Lett. A 374(15–16), 1611–1615 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  60. F. Melands, T. Aslaksen, O. Havnes, A new damping effect for the dust-acoustic wave. Planet. Space Sci. 41(4), 321–325 (1993)

    ADS  Google Scholar 

  61. F. Melandso, Lattice waves in dust plasma crystals. Phys. Plasmas 3(11), 3890–3901 (1996)

    ADS  Google Scholar 

  62. Y.N. Nejoh, The dust charging effect on electrostatic ion waves in a dusty plasma with trapped electrons. Phys. Plasmas 4(8), 2813–2819 (1997)

    ADS  Google Scholar 

  63. B. Xie, K. He, Z. Huang, Dust-acoustic solitary waves and double layers in dusty plasma with variable dust charge and two-temperature ions. Phys. Plasmas 6(10), 3808–3816 (1999)

    ADS  Google Scholar 

  64. T.S. Gill, N.S. Saini, H. Kaur, The Kadomstev-Petviashvili equation in dusty plasma with variable dust charge and two temperature ions. Chaos, Solitons Fractals 28(4), 1106–1111 (2006)

    ADS  Google Scholar 

  65. H. Washimi, T. Taniuti, Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17(19), 996–998 (1966)

  66. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 42, Springer Sci. Busi. Media (2013)

  67. M. Khalid, M. Khan, A.U. Rahman, F. Hadi, Nonlinear periodic structures in a magnetized plasma with Cairns distributed electrons. Indian J. Phys. 96(6), 1783–1790 (2022)

    ADS  Google Scholar 

  68. M. Khalid, M. Khan, M. Irshad, Periodic and localized structures in dusty plasma with Kaniadakis distribution. Zeitschrift für Naturforschung A 76(10), 891–897 (2021)

  69. P.F. Byrd, M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists (Springer-Verlag, Berlin Heidelberg New York, 1971)

    MATH  Google Scholar 

  70. E.J. Maier, J.H. Hoffman, Observation of a two-temperature ion energy distribution in regions of polar wind flow. J. Geophys. Res. 79(16), 2444–2447 (1974)

    ADS  Google Scholar 

  71. W.M. Moslem, Obliquely propagating dust-acoustic solitary waves in cosmic dust-laden plasmas. Chaos, Solitons Fractals 23(3), 939–947 (2005)

    ADS  MATH  Google Scholar 

  72. S.G. Tagare, S.V. Singh, R.V. Reddy, G.S. Lakhina, Electron acoustic solitons in the Earth’s magnetotail. Nonlinear Process. Geophys. 11(2), 215–218 (2004)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the reviewer for his useful comments and suggestions which helped us to improve the quality of the paper. Mr. Tanay Sarkar (JRF) gratefully acknowledges the research Fellowship received from University Grants Commission (UGC) [No.1155/(CSIR-UGC NET DEC.2017)].

Author information

Authors and Affiliations

Authors

Contributions

Their contribution is given as follows: Tanay Sarkar: writing — original draft preparation, methodology. Subrata Roy: software, visualization. Santanu Raut: conceptualization, writing — review and editing. Prakash Chandra Mali: investigation.

Corresponding author

Correspondence to Santanu Raut.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In order to acquire the periodic wave solution of KP Eq. (35), utilizing the transformation (36), we finally get,

$$\begin{aligned} (-Vl+Dm^2)U'' + Al^2(UU')' + Bl^4U^{(4)} = 0. \end{aligned}$$
(99)

Twice integration yields,

$$\begin{aligned} (-Vl+Dm^2)U +\frac{Al^2}{2}U^2 + Bl^4U'' = 0, \end{aligned}$$

After, multiplication by \(2U'\) we again integrate the above equation and get

$$\begin{aligned} (U')^2 =-\frac{A}{3Bl^2}U^3+\frac{(Vl-Dm^2)}{Bl^4}U^2+ \frac{\Gamma }{Bl^4}, \end{aligned}$$
(100)

To approve a periodic solution, the constant \(\Gamma\) is chosen as \(\Gamma =\frac{2(Dm^2-Vl)^3}{3A^2l^4}\). Due to a particular initial condition, \(\Gamma\) possibly takes the aforesaid form. Then for \(A>0\) and \(A<0\), we can express (48) respectively as

$$\begin{aligned} (U')^2 =\frac{A}{3Bl^2}[(e_1-U)(U-e_2)(U-e_3)], \end{aligned}$$
(101)

and

$$\begin{aligned} (U')^2 =(-\frac{A}{3Bl^2})[(e_3-U)(e_2-U)(U-e_1)], \end{aligned}$$
(102)

where \(e_1=(1+\sqrt{3})\frac{Vl-Dm^2}{Al^2},e_2=\frac{Vl-Dm^2}{Al^2}, e_3=(1-\sqrt{3})\frac{Vl-Dm^2}{Al^2}\). Here, B is always positive, and so in accordance with the nonlinear coefficient A, the term \(\frac{A}{3Bl^2}\) becomes positive or negative. The real numbers \(e_1,e_2,e_3\) are ordered as \(e_1>e_2>e_3\) and \(e_1>U \ge e_2\) when \(\frac{A}{3Bl^2}>0\). On the other hand, if \(\frac{A}{3Bl^2}<0\), then \(e_1,e_2,e_3\) are arranged as \(e_1<e_2<e_3\) and \(e_1<U \le e_2\). Now, we write Eq. (101) as

$$\begin{aligned} \sqrt{\frac{A}{3Bl^2}}\theta =\int \frac{dU}{\sqrt{(e_1-U)(U-e_2)(U-e_3)}}. \end{aligned}$$
(103)

Using the transformation

$$\begin{aligned} U=e_1-(e_1-e_2)sin^2\Theta \end{aligned}$$
(104)

we have

$$\begin{aligned} \begin{aligned} \sqrt{\frac{A}{3Bl^2}}\theta&=\int \frac{dU}{\sqrt{(e_1-U)(U-e_2)(U-e_3)}} \\&=\frac{2}{\sqrt{e_1-e_3}}\int \frac{d\Theta }{\sqrt{1-\kappa ^2sin^2\Theta }}, \end{aligned} \end{aligned}$$
(105)

where \(\kappa ^2=\frac{e_1-e_2}{e_1-e_3}\), and from the definition of Jacobi elliptic sine function [69] we get

$$\begin{aligned} sin\Theta =sn\left( \frac{\sqrt{\frac{A}{3Bl^2}(e_1-e_3)}}{2}\theta ,\kappa \right) \end{aligned}$$
(106)

Hence, the solution of Eq. (100) becomes,

$$\begin{aligned} U(\theta )=e_1-(e_1-e_2)sn^2\left( \frac{\sqrt{\frac{A}{3Bl^2}(e_1-e_3)}}{2}\theta ,\kappa \right) . \end{aligned}$$
(107)

Therefore, the periodic wave solution of KP Eq. (35) is

$$\begin{aligned} \phi (\xi ,\eta ,\tau )=e_1-(e_1-e_2)sn^2\left( \frac{\sqrt{\frac{A}{3Bl^2}(e_1-e_3)}}{2}(l\xi +m\eta -V\tau ),\kappa \right) . \end{aligned}$$
(108)

Similarly for \(A<0\), \(e_1<e_2<e_3\) and \(e_1<U \le e_2\) we can write (102) using (104) as

$$\begin{aligned} \begin{aligned} \sqrt{-\frac{A}{3Bl^2}}\theta&=\int \frac{dU}{\sqrt{(e_3-U)(e_2-U)(U-e_1)}} \\&=\frac{2}{\sqrt{e_3-e_1}}\int \frac{d\Theta }{\sqrt{1-\kappa ^2sin^2\Theta }}, \end{aligned} \end{aligned}$$
(109)

and from the definition of Jacobi elliptic sine function [69] we get

$$\begin{aligned} sin\Theta =sn\left( \frac{\sqrt{-\frac{A}{3Bl^2}(e_3-e_1)}}{2}\theta ,\kappa \right) . \end{aligned}$$
(110)

Hence, the solution of (100) will be

$$\begin{aligned} U(\theta )=e_1-(e_1-e_2)sn^2\left( \frac{\sqrt{-\frac{A}{3Bl^2}(e_3-e_1)}}{2}\theta ,\kappa \right) . \end{aligned}$$
(111)

Finally, the periodic wave solution of KP Eq. (35) can be expressed as,

$$\begin{aligned} \phi (\xi ,\eta ,\tau )=e_1-(e_1-e_2)sn^2\left( \frac{\sqrt{-\frac{A}{3Bl^2}(e_3-e_1)}}{2}(l\xi +m\eta -V\tau ),\kappa \right) . \end{aligned}$$
(112)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, T., Roy, S., Raut, S. et al. Studies on the Dust Acoustic Shock, Solitary, and Periodic Waves in an Unmagnetized Viscous Dusty Plasma with Two-Temperature Ions. Braz J Phys 53, 12 (2023). https://doi.org/10.1007/s13538-022-01221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01221-5

Keywords

Navigation