Skip to main content
Log in

Exterior controllability properties for a fractional Moore–Gibson–Thompson equation

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The three concepts of exact, null and approximate controllabilities are analyzed from the exterior of the Moore–Gibson–Thompson equation associated with the fractional Laplace operator subject to the nonhomogeneous Dirichlet type exterior condition. Assuming that \(b>0\) and \(\alpha -\frac{\tau c^2}{b}>0\), we show that if \(0<s<1\) and \(\varOmega \subset {\mathbb {R}}^N\) (\(N\ge 1\)) is a bounded domain with a Lipschitz continuous boundary \(\partial \varOmega \), then there is no control function g such that the following system

$$\begin{aligned} {\left\{ \begin{array}{ll} \tau u_{ttt} + \alpha u_{tt}+c^2(-\varDelta )^{s} u + b(-\varDelta )^{s} u_{t}=0 &{} \text{ in } \; \varOmega \times (0,T),\\ u=g\chi _{{\mathcal {O}}} &{} \text{ in } \; ({\mathbb {R}}^N\setminus \varOmega )\times (0,T) ,\\ u(\cdot ,0) = u_0, u_t(\cdot ,0) = u_1, u_{tt}(\cdot ,0)=u_2 &{} \text{ in } \; \varOmega , \end{array}\right. } \end{aligned}$$

is exactly or null controllable in time \(T>0\). However, we prove that for \(0<s<1\), the system is approximately controllable for every \(g\in H^1((0,T);L^{2}({\mathcal {O}}))\), where \(\mathcal O\subset {\mathbb {R}}^N\setminus {\overline{\varOmega }}\) is an arbitrary non-empty open set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antil, H., Khatri, R., Warma, M.: External optimal control of nonlocal PDEs. Inverse Problems 35(8), Art. 084003, 35 pp. (2019)

  2. Arendt, W., ter Elst, A.F.M., Warma, M.: Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator. Comm. Partial Differential Equations 43(1), 1–24 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bellman, R.: An Introduction to the Theory of Dynamic Programming. The Rand Corporation, Santa Monica, Calif (1953)

    MATH  Google Scholar 

  4. Biccari, U., Warma, M., Zuazua, E.: Addendum: Local elliptic regularity for the Dirichlet fractional Laplacian. Adv. Nonlinear Stud. 17(4), 837–839 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biccari, U., Warma, M., Zuazua, E.: Local elliptic regularity for the Dirichlet fractional Laplacian. Adv. Nonlinear Stud. 17(2), 387–409 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bogdan, K., Burdzy, K., Chen, Z.-Q.: Censored stable processes. Probab. Theory Related Fields 127(1), 89–152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L.A., Roquejoffre, J.-M., Sire, Y.: Variational problems for free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12(5), 1151–1179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caixeta, A.H., Lasiecka, I., Domingos Cavalcanti, V.N.: On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation. Evol. Equ. Control Theory 5(4), 661–676 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Claus, B., Warma, M.: Realization of the fractional Laplacian with nonlocal exterior conditions via forms method. J. Evol. Equ. 20(4), 1597–1631 (2020). https://doi.org/10.1007/s00028-020-00567-0

  10. Conejero, J.A., Lizama, C., Rodenas, F.: Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation. Appl. Math. Inf. Sci. 9(5), 2233–2238 (2015)

    MathSciNet  Google Scholar 

  11. Dell’Oro, F., Lasiecka, I., Pata, V.: The Moore-Gibson-Thompson equation with memory in the critical case. J. Differential Equations 261(7), 4188–4222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dipierro, S., Ros-Oton, X., Valdinoci, E.: Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoam. 33(2), 377–416 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dubkov, A.A., Spagnolo, S., Uchaikin, V.V.: Lévy flight superdiffusion: an introduction. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18(9), 2649–2672 (2008)

  15. Fattorini, H.O., Russell, D.L.: Exact controllability theorems for linear parabolic equations in one space dimension. Archive for Rational Mechanics and Analysis 43(4), 272–292 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gal, C.G., Warma, M.: Bounded solutions for nonlocal boundary value problems on Lipschitz manifolds with boundary. Adv. Nonlinear Stud. 16(3), 529–550 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gal, C.G., Warma, M.: Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces. Comm. Partial Differential Equations 42(4), 579–625 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gal, C.G., Warma, M.: On some degenerate non-local parabolic equation associated with the fractional \(p\)-Laplacian. Dyn. Partial Differ. Equ. 14(1), 47–77 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gal, C.G., Warma, M.: Fractional In Time Semilinear Parabolic Equations And Applications, Volume 84 of Mathématiques et Applications. Springer (2020)

  20. Ghosh, T., Rüland, A., Salo, M., Uhlmann, G.: Uniqueness and reconstruction for the fractional Calderón problem with a single measurement. J. Funct. Anal. 279(1), Art. 108505, 42 (2020)

  21. Ghosh, T., Salo, M., Uhlmann, G.: The Calderón problem for the fractional Schrödinger equation. Anal. PDE 13(2), 455–475 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Glowinski, R., He, J., Lions, J.-L.: On the controllability of wave models with variable coefficients: a numerical investigation. Comput. Appl. Math. 21(1), 191–225 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Glowinski, R., Lions, J.-L.: Exact and approximate controllability for distributed parameter systems. Acta Numer. 4, 159–328 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gorenflo, R., Mainardi, F., Vivoli, A.: Continuous-time random walk and parametric subordination in fractional diffusion. Chaos Solitons Fractals 34(1), 87–103 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grisvard, P.: Elliptic Problems In Nonsmooth Domains, Volume 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011)

  26. Grubb, G.: Fractional Laplacians on domains, a development of Hörmander’s theory of \(\mu \)-transmission pseudodifferential operators. Adv. Math. 268, 478–528 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jonsson, A., Wallin, H.: Function spaces on subsets of \({\bf R}^n\). Math. Rep., 2(1), xiv+221 (1984)

  28. Kalman, R.E.: On the general theory of control systems. IRE Trans. Automat. Control 4(3), 110–110 (1959)

    Article  Google Scholar 

  29. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng., 82 Ser. D, 35–45 (1960)

  30. Kaltenbacher, B., Lasiecka, I.: Exponential decay for low and higher energies in the third order linear Moore-Gibson-Thompson equation with variable viscosity. Palest. J. Math. 1(1), 1–10 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Kaltenbacher, B., Lasiecka, I., Marchand, R.: Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound. Control Cybernet. 40(4), 971–988 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Kaltenbacher, B., Lasiecka, I., Pospieszalska, M.K.: Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore–Gibson–Thompson equation arising in high intensity ultrasound. Math. Models Methods Appl. Sci. 22(11), Art. 1250035, 34 pp. (2012)

  33. Keyantuo, V., Warma, M.: On the interior approximate controllability for fractional wave equations. Discrete Contin. Dyn. Syst. 36(7), 3719–3739 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lasiecka. I.: Global solvability of Moore–Gibson–Thompson equation with memory arising in nonlinear acoustics. J. Evol. Equ. 17(1), 411–441 (2017)

  35. Lasiecka, I., Wang, X.: Moore-Gibson-Thompson equation with memory, part II: General decay of energy. J. Differential Equations 259(12), 7610–7635 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lasiecka, I., Wang, X.: Moore–Gibson–Thompson equation with memory, part I: exponential decay of energy. Z. Angew. Math. Phys. 67(2), Art. 17, 23 pp. (2016)

  37. Lions, J.-L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1 volume 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris, 1988. Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch

  38. Lions, J.-L.: Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30(1), 1–68 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lizama, C., Zamorano, S.: Controllability results for the Moore-Gibson-Thompson equation arising in nonlinear acoustics. J. Differential Equations 266(12), 7813–7843 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Louis-Rose, C., Warma, M.: Approximate controllability from the exterior of space-time fractional wave equations. Appl. Math. Opt. 83(1), 207–250 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  42. Marchand, R., McDevitt, T., Triggiani, R.: An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Math. Method Appl. Sci. 35(15), 1896–1929 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Martin, P., Rosier, L., Rouchon, P.: Null controllability of the structurally damped wave equation with moving control. SIAM J. Control Optim. 51(1), 660–684 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pellicer, M., Solà-Morales, J.: Optimal scalar products in the Moore-Gibson-Thompson equation. Evol. Equ. Control Theory 8(1), 203–220 (2019)

  45. Pontriagyin, L.S.: The Mathematical Theory of Optimal Processes. International series of monographs in pure and applied mathematics. Pergamon Press (1964)

  46. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101(3), 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ros-Oton, X., Serra, J.: The extremal solution for the fractional Laplacian. Calc. Var. Partial Differential Equations 50(3), 723–750 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rosier, L., Rouchon, P.: On the controllability of a wave equation with structural damping. Int. J. Tomogr. Stat. 5(W07), 79–84 (2007)

  49. Russell, D.L.: Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20(4), 639–739 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  50. Schneider, W.R.: Grey noise. In: Stochastic Processes, Physics and Geometry, World Sci. Publ., Teaneck, NJ, 676–681 (1990)

  51. Tucsnak, M., Weiss, G.: Observation And Control For Operator Semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2009

  52. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. SeMA 49, 33–44 (2009)

    MathSciNet  MATH  Google Scholar 

  53. Warma, M.: The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets. Potential Anal. 42(2), 499–547 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Warma, M.: The fractional Neumann and Robin type boundary conditions for the regional fractional \(p\)-Laplacian. NoDEA Nonlinear Differential Equations Appl. 23(1), 1–46 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Warma, M.: On the approximate controllability from the boundary for fractional wave equations. Appl. Anal. 96(13), 2291–2315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Warma, M.: Approximate controllability from the exterior of space-time fractional diffusive equations. SIAM J. Control Optim. 57(3), 2037–2063 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  57. Warma, M., Zamorano, S.: Null controllability from the exterior of a one-dimensional nonlocal heat equation. Control and Cybernetics 48(3), 417–436 (2019)

    MathSciNet  MATH  Google Scholar 

  58. Warma, M., Zamorano, S.: Analysis of the controllability from the exterior of strong damping nonlocal wave equations. ESAIM Control Optim. Calc. Var. 26, Paper No. 42, 34 pp. (2020)

  59. Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22(3), 87–99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47(2), 197–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zuazua, E.: Controllability of Partial Differential Equations. 3ème Cycle. Castro Urdiales, Espagne (2006)

Download references

Acknowledgements

C. Lizama is partially supported by Fondecyt Grant N\(^\circ \) 1180041. M. Warma is partially supported by Air Force Office of Scientific Research (AFOSR) under Award FA9550-18-1-0242 and Army Research Office (ARO) under Award W911NF-20-1-0115. S. Zamorano is partially supported by the Fondecyt Postdoctoral Grant N\(^\circ \) 3180322 and Anid PAI Convocatoria Nacional Subvención a la Instalación en la Academia Convocatoria año 2019 PAI77190106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Zamorano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizama, C., Warma, M. & Zamorano, S. Exterior controllability properties for a fractional Moore–Gibson–Thompson equation. Fract Calc Appl Anal 25, 887–923 (2022). https://doi.org/10.1007/s13540-022-00018-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00018-2

Keywords

Mathematics Subject Classification

Navigation