Skip to main content
Log in

In vitro degradation of poly(l-lactide)/poly(ε-caprolactone) blend reinforced with MWCNTs

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The physical and mechanical properties of poly(l-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends reinforced with multiwalled carbon nanotubes (MWCNTs) before and after in vitro degradation were investigated. Because of brittleness, PLLA needs to be plasticized by PCL as a soft polymer. The MWCNTs are used to balance the stiffness and the flexibility of PLLA/PCL blends. The results showed that with incremental increase in concentration of MWCNTs in composites, the agglomerate points of MWCNTs were increased. The physical and mechanical properties of prepared PLLA/PCL blends and MWCNT/PLLA/PCL nanocomposites were characterized. The X-ray diffraction analysis of the prepared blends and composites showed that MWCNTs, as heterogeneous nucleation points, increased the lamella size and therefore the crystallinity of PLLA/PCL. The mechanical strength of blends was decreased with incremental increase in PCL weight ratio. The mechanical behavior of composites showed large strain after yielding and high elastic strain characteristics. The tensile tests results showed that the tensile modulus and tensile strength are significantly increased with increasing the concentration of MWCNTs in composites, while, the elongation-at-break was decreased. The in vitro degradation rate of polymer blends in phosphate buffer solution (PBS) increased with higher weight ratio of PCL in the blend. The in vitro degradation rate of nanocomposites in PBS increased about 65% when the concentration of MWCNTs increased up to 3% (by weight). The results showed that the degradation kinetics of nanocomposites for scaffolds can be engineered by varying the contents of MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Ajayan PM, Charlier JC, Rinzler AG (1999) Carbon nanotubes from macromolecules to nanotechnology. Proc Natl Acad Sci 96:14199–14200

    Article  CAS  Google Scholar 

  3. Dai H (2002) Carbon nanotubes synthesis integration and properties. Acc Chem Res 35:1035–1044

    Article  CAS  Google Scholar 

  4. Maglio G, Malinconico M, Migliozzi A, Groeninckx G (2004) Immiscible poly(l-lactide)/poly(ε-caprolactone) blends, influence of the addition of a poly(l-lactide)-poly(oxyethylene) block copolymer on thermal behavior and morphology. Macromol Chem Phys 205:946–950

    Article  CAS  Google Scholar 

  5. Kumar S, Dang TD, Arnold FE, Bhattacharyya AR, Min BG, Zhang X, Vaia RA, Park C, Adams WW, Hauge RH (2002) Synthesis structure and properties of PBO/SWNT composites. Macromolecules 35:9039–9043

    Article  CAS  Google Scholar 

  6. Qian D, Dickey EC, Andrew R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870

    Article  CAS  Google Scholar 

  7. Song CX, Sun HF, Feng XD (1987) Microspheres of biodegradable block copolymer for long-acting controlled delivery of contraceptives. Polym J 19:485–491

    Article  CAS  Google Scholar 

  8. Tomihata K, Suzuki K, Oka T, Ikada Y (1998) A new resorbable monofilament suture. Polym Degrad Stab 59:13–18

    Article  CAS  Google Scholar 

  9. Dunnen WFA, Schakenraad JM, Zondervan GJ, Pennings AJ, Lei B, Robinson PH (1993) A new PLLA/PCL copolymer for nerve regeneration. J Mater Sci Mater Med 4:521–525

    Article  Google Scholar 

  10. Kricheldorf HR, Saunders IK, Stricker A (2000) Polylactones 48 SnOct2-initiated polymerizations of lactide: a mechanistic study. Macromolecules 33:702–709

    Article  CAS  Google Scholar 

  11. Duda A, Biela T, Libiszowski J, Penczek S, Dubois P, Mecerreyes D, Jerome R (1998) Block and random copolymers of ε-caprolactone. Polym Degrad Stab 59:215–222

    Article  CAS  Google Scholar 

  12. Lu XL, Cai W, Gao ZY (2008) Shape-memory behaviors of biodegradable poly(l-lactide-co-ε-caprolactone) copolymers. J Appl Polym Sci 108:1109–1115

    Article  CAS  Google Scholar 

  13. Zengin H, Zhou W, Jin J, Czerw R, Smith DW, Echegoyen A, Carroll DL, Foulger SH, Ballato J (2002) Carbon nanotube doped polyaniline. Adv Mater 14:1480–1483

    Article  CAS  Google Scholar 

  14. Zhang DH, Kandadai MA, Cech J, Roth S, Curran SA (2006) Poly(l-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite, characterization and biocompatibility evaluation. J Phys Chem B 110:12910–12915

    Article  CAS  Google Scholar 

  15. Mitchell CA, Krishnamoorti R (2007) Dispersion of single-walled carbon nanotubes in poly(ε-caprolactone). Macromolecules 40:1538–1545

    Article  CAS  Google Scholar 

  16. Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706

    Article  CAS  Google Scholar 

  17. Nabipour Chakoli A, Cai W, Feng JT, Sui JH (2009) Efficient load transfer to functionalized MWCNTs as reinforcement in polymer nanocomposites. Int J Mod Phys B 23:1401–1407

    Article  Google Scholar 

  18. Winzenburg G, Schmidt C, Fuchs S, Kissel T (2004) Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv Drug Deliv Rev 56:1453–1466

    Article  CAS  Google Scholar 

  19. Lopez-Rodrıguez N, Lopez-Arraiza A, Meaurio E, Sarasua JR (2006) Crystallization morphology and mechanical behavior of polylactide/poly(ε-caprolactone) blends. Polym Eng Sci 46:1299–1308

    Article  Google Scholar 

  20. Tsuji H, Fukui I (2003) Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44:2891–2896

    Article  CAS  Google Scholar 

  21. Tsuji H, Kawashima Y, Takikawa H (2007) Poly(l-lactide)/nanostructured carbon composites, conductivity, thermal properties, crystallization, and biodegradation. Polymer 48:4213–4225

    Article  CAS  Google Scholar 

  22. Miyata T, Masuko T (1997) Morphology of poly(l-lactide) solution-grown crystals. Polymer 38:4003–4009

    Article  CAS  Google Scholar 

  23. Gupta B, Geeta A, Ray AR (2012) Preparation of poly(ε-caprolactone)/poly(ε-caprolactone-co-lactide) (PCL/PLCL) blend filament by melt spinning. J Appl Polym Sci 123:1944–1950

    Article  CAS  Google Scholar 

  24. Liao GY, Chen L, Zeng XY, Zhou XP, Xie XL, Peng EJ, Ye ZQ, Mai YW (2011) Electrospun poly(l-lactide)/poly(ε-caprolactone) blend fibers and their cellular response to adipose-derived stem cells. J Appl Polym Sci 120:2154–2165

    Article  CAS  Google Scholar 

  25. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131

    Article  CAS  Google Scholar 

  26. Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan R (2007) Biological properties of carbon nanotubes. J Nanosci Nanotechnol 7:1–14

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Excellent Youth Foundation of Heilongjiang Province of China (No. JC200715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amirian, M., Nabipour Chakoli, A., Cai, W. et al. In vitro degradation of poly(l-lactide)/poly(ε-caprolactone) blend reinforced with MWCNTs. Iran Polym J 21, 165–174 (2012). https://doi.org/10.1007/s13726-012-0014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-012-0014-5

Keywords

Navigation