Skip to main content
Log in

Enhanced mechanical properties and degradability of poly(butylene succinate) and poly(lactic acid) blends

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

To improve the tensile properties and degradability of poly(butylene succinate) (PBS) for biomedical usage, biodegradable polymer blends have been developed. A series of PBS and poly(lactic acid) (PLA) blends were prepared, and their degradation behaviors in simulated body fluid for 16 months were investigated based on morphology, tensile test, weight analysis, and molecular weight. The results showed that the incorporation of PLA into PBS increased the initial tensile strength to some extent, and the blends lost their tensile properties earlier than their parent polymers with the proceeding of hydrolysis. Both blends and parent polymers went through a plateau and subsequent rise stage in mass loss and water absorption, but the blends hydrolyzed faster than the parent polymers. The molecular weight variations also demonstrated faster hydrolysis of the blends. Moreover, both blends and their parent polymers underwent a slow-to-fast transition in their hydrolysis rates. When the M n of PBS and PLA reached 4.0 × 104 and 9.0 × 104, the hydrolysis of parent polymers and blends began to accelerate, which is the start of auto-acceleration. The blends hydrolyzed faster in both stages. The interface between the components initiated accelerating hydrolysis in the first stage, and the reciprocal auto-acceleration effect resulted in faster hydrolysis of the blends in the second stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017

    Article  CAS  Google Scholar 

  2. Kretlow JD, Mikos AG (2008) 2007 AIChE Alpha Chi Sigma Award: from material to tissue: biomaterial development, scaffold fabrication, and tissue engineering. AlChE J 54:3048–3067

    Article  CAS  Google Scholar 

  3. San Román J, Guillén García P (1991) Partially biodegradable polyacrylicpoly-ester composites for internal bone fracture fixation. Biomaterials 12:236–241

    Article  Google Scholar 

  4. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16

    CAS  Google Scholar 

  5. Mikos AG, Herring SW, Ochareon P, Elisseeff J, Lu HH, Kandel R, Schoen FJ, Toner M, Mooney D, Atala A, Dyke ME, Kaplan D, Vunjak Novakovic G (2006) Engineering complex tissues. Tissue Eng 12:3307–3339

    Article  CAS  Google Scholar 

  6. Wang H, Ji J, Zhang W, Zhang Y, Jiang J, Wu Z, Pu S, Chu PK (2009) Biocompatibility and bioactivity of plasma-treated biodegradable poly(butylenes succinate). Acta Biomater 5:279–287

    Article  CAS  Google Scholar 

  7. Li H, Chang J, Cao A, Wang J (2005) In vitro evaluation of biodegradable poly(butylene succinate) as a novel biomaterial. Macromol Biosci 5:433–440

    Article  CAS  Google Scholar 

  8. Fan D, Chang PR, Lin N, Yu J, Huang J (2011) Structure and properties of alkaline lignin-filled poly(butylene succinate) plastics. Iran Polym J 20:3–14

    CAS  Google Scholar 

  9. Ishioka R, Kitakuni E, Ichikawa Y (2002) Aliphatic polyesters: “Bionolle”. In: Doi Y, Steinbüchel A (eds) Biopolymers, vol 4: polyesters III, application and commercial products. Wiley, New York

    Google Scholar 

  10. Chrissafis K, Paraskevopoulos KM, Bikiaris DN (2005) Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): comparative study. Thermochim Acta 435:142–150

    Article  CAS  Google Scholar 

  11. Bramfeldt H, Sarazin P, Vermette P (2008) Blends as a strategy towards tailored hydrolytic degradation of poly(ε-caprolactone-co-d, l-lactide)-poly(ethylenelycol)-poly(ε-caprolactone-co-d, l-lactide) co-polymers. Polym Degrad Stab 93:877–882

    Article  CAS  Google Scholar 

  12. Vieira AC, Vieira JC, Ferra JM, Magalhães FD, Guedes RM, Marques AT (2011) Mechanical study of PLA-PCL fibers during in vitro degradation. J Mech Behav Biomed Mater 4:451–460

    Article  CAS  Google Scholar 

  13. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  14. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliver Rev 54:3–12

    Article  CAS  Google Scholar 

  15. Tan LC, Chen YW, Zhou WH, Nie HR, Li F, He XH (2010) Novel poly(butylenes succinate-co-lactic acid) copolyesters: synthesis, crystallization, and enzymatic degradation. Polym Degrad Stab 95:1920–1927

    Article  CAS  Google Scholar 

  16. Park JW, Im SS (2002) Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylenes succinate). J Appl Polym Sci 86:647–655

    Article  CAS  Google Scholar 

  17. Yokohara T, Yamaguchi M (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J 44:677–685

    Article  CAS  Google Scholar 

  18. Chen GX, Kim HS, Kim ES, Yoon JS (2005) Compatibilization-like effect of reactive organoclay on the poly(l-lactide)/poly(butylenes succinate) blends. Polymer 46:11829–11836

    Article  CAS  Google Scholar 

  19. Shibata M, Inoue Y, Miyoshi M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylenes succinate-co-l-lactide) and poly(butylenes succinate). Polymer 47:3357–3364

    Article  Google Scholar 

  20. Tamada J, Langer R (1993) Erosion kinetics of hydrolytically degradable polymers. Proc Natl Acad Sci USA 90:552–556

    Article  CAS  Google Scholar 

  21. Andriano KP, Tabata Y, Ikada Y, Heller J (1999) In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J Biomed Mater Res 48:602–612

    Article  CAS  Google Scholar 

  22. von Burkersroda F, Schedl L, Göpferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23:4221–4231

    Article  Google Scholar 

  23. Farahani TD, Entezami AA, Abtahi M (2005) Degradation of poly(d, l-lactide-co-glycolide) 50:50 implant in aqueous medium. Iran Polym J 14:753–763

    CAS  Google Scholar 

  24. Göpferich A (1997) Polymer bulk erosion. Macromolecules 30:2598–2604

    Article  Google Scholar 

  25. Lyu SP, Untereker D (2009) Degradability of polymers for implantable biomedical devices. Int J Mol Sci 10:4033–4065

    Article  CAS  Google Scholar 

  26. Siparsky GL, Voorhees KJ, Miao F (1998) Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: autocatalysis. J Polym Environ 6:31–41

    Article  CAS  Google Scholar 

  27. Göpferich A (1996) Mechanism of polymer degradation and erosion. Biomaterials 17:103–114

    Article  Google Scholar 

  28. Renard E, Walls M, Guérin P, Langlois V (2004) Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates. Polym Degrad Stab 85:779–787

    Article  CAS  Google Scholar 

  29. Weiner AA, Shuck DM, Bush JR, Shastri VP (2007) In vitro degradation characteristics of photocrosslinked anhydride systems for bone augmentation applications. Biomaterials 28:5259–5270

    Article  CAS  Google Scholar 

  30. Navarro M, Ginebra MP, Planell JA, Barrias CC, Barbosa MA (2005) In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomater 1:411–419

    Article  CAS  Google Scholar 

  31. Wang XQ, Zhang W, Yan Q (2003) CN Patent 1,424,339

  32. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27:2907–2915

    Article  CAS  Google Scholar 

  33. Chen CC, Chueh JY, Tseng H, Huang HM, Lee SY (2003) Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24:1167–1173

    Article  CAS  Google Scholar 

  34. Mobedi H, Mashak A, Nekoomanesh M, Orafai H (2011) l-Lactide additive and in vitro degradation performance of poly(l-lactide) films. Iran Polym J 20:237–245

    CAS  Google Scholar 

  35. Shibata M, Inoue Y, Miyoshi M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylenes succinate-co-l-lactate) and poly(butylenes succinate). Polymer 47:3557–3564

    Article  CAS  Google Scholar 

  36. Tsuji H (2003) In vitro hydrolysis of blends from enantimeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Biomaterials 24:537–547

    Article  CAS  Google Scholar 

  37. Claes LE, Ignatius AA, Rehm KE, Scholz C (1996) New bioresorbable pin for the reduction of small bony fragments: design, mechanical properties and in vitro degradation. Biomaterials 17:1621–1626

    Article  CAS  Google Scholar 

  38. Lyu SP, Schley J, Loy B, Lind D, Hobot C, Sparer R, Untereker D (2007) Kinetics and time-temperature equivalence of polymer degradation. Biomacromolecules 8:2301–2310

    Article  CAS  Google Scholar 

  39. Mohammadi Rovshandeh J, Nabi Sarbolouki M (2001) Synthesis and in vitro hydrolytic degradation of polyglycolide and its l-lactide copolymer. Iran Polym J 10:53–58

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by a National Natural Science Foundation of China (NSFC) surface project with Grant 30870620.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junhui Ji or Xiubin Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Wang, X., Hua, K. et al. Enhanced mechanical properties and degradability of poly(butylene succinate) and poly(lactic acid) blends. Iran Polym J 22, 267–275 (2013). https://doi.org/10.1007/s13726-013-0124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-013-0124-8

Keywords

Navigation