Skip to main content
Log in

Dynamic mechanical properties of bacterial cellulose nanofibres

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In this work, dynamic mechanical properties of the grown bacterial cellulose (BC) nanofibers were investigated. BC pellicles were fabricated using bacterial fermentation (Gluconacetobacter xylinus). The morphology results confirmed that the dried BC at ambient conditions could be categorized as a xerogel. The thermal dynamic mechanical analysis results indicated that the bound water in bacterial cellulose structure had a very significant effect on thermal and dynamic mechanical properties of BC pellicles. The results of dehydration kinetics study showed that the main mechanism governing water loss of BC was Fickian diffusion. The glass transition temperatures (Tg) of the BC dried at 25 °C (ambient temperature) and 105 °C were estimated − 33 and − 18 °C, respectively. This discrepancy can be attributed to the plasticizing effect of the bound water of BC dried at ambient temperature. Furthermore, the results indicated that its modulus drop smaller than one order of magnitude can be attributed to its high crystalline nature. The storage modulus versus frequency increased due to the limitation of the relaxation process of the polymer chains. Moreover, the relaxation time distribution was achieved from the slope of the modulus master curve versus logarithmic frequency. As a result, BC exhibited a solid-like behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ebrahimi E, Babaeipour V, Khanchezar S (2016) Effect of down-stream processing parameters on the mechanical properties of bacterial cellulose. Iran Polym J 25:739–746

    Article  CAS  Google Scholar 

  2. Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40:137–143

    Article  CAS  Google Scholar 

  3. Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381

    Article  CAS  PubMed  Google Scholar 

  4. Kang YJ, Chun S-J, Lee S-S, Kim BY, Kim JH, Chung H, Lee S-Y, Kim W (2012) All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6:6400–6406

    Article  CAS  PubMed  Google Scholar 

  5. Wanichapichart P, Taweepreeda W, Nawae S, Choomgan P, Yasenchak D (2012) Chain scission and anti fungal effect of electron beam on cellulose membrane. Radiat Phys Chem 81:949–953

    Article  CAS  Google Scholar 

  6. Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Carbohydr Polym 89:1189–1197

    Article  CAS  PubMed  Google Scholar 

  7. Müller A, Zink M, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2014) Bacterial nanocellulose with a shape-memory effect as potential drug delivery system. RSC Adv 4:57173–57184

    Article  CAS  Google Scholar 

  8. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  9. Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32

    Article  CAS  PubMed  Google Scholar 

  10. Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  CAS  PubMed  Google Scholar 

  11. Lee K-Y, Quero F, Blaker JJ, Hill CAS, Eichhorn SJ, Bismarck A (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18:595–605

    Article  CAS  Google Scholar 

  12. Hsieh Y-C, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15:507–513

    Article  CAS  Google Scholar 

  13. Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  CAS  Google Scholar 

  14. Park J-S, Park J-W, Ruckenstein E (2001) Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer 42:4271–4280

    Article  CAS  Google Scholar 

  15. Wu YB, Yu SH, Mi FL, Wu CW, Shyu SS, Peng CK, Chao AC (2004) Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr Polym 57:435–440

    Article  CAS  Google Scholar 

  16. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10:425–432

    Article  CAS  Google Scholar 

  17. Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685–5692

    Article  CAS  PubMed  Google Scholar 

  18. Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544

    Article  CAS  Google Scholar 

  19. Bondeson D, Oksman K (2007) Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Compos Part A Appl Sci Manuf 38:2486–2492

    Article  CAS  Google Scholar 

  20. Szcześniak L, Rachocki A, Tritt-Goc J (2008) Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 15:445–451

    Article  CAS  Google Scholar 

  21. Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T (2008) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 15:111–120

    Article  CAS  Google Scholar 

  22. Ciechańska D (2004) Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text East Eur 12:69–72

    Google Scholar 

  23. Sirousazar M, Kokabi M, Yari M (2008) Mass transfer during the pre-usage dehydration of polyvinyl alcohol hydrogel wound dressings. Iran J Pharm Sci 4:51–56

    Google Scholar 

  24. Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82:173–180

    Article  CAS  Google Scholar 

  25. Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88:596–603

    Article  CAS  Google Scholar 

  26. Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  27. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer-Verlag, New York

    Book  Google Scholar 

  28. Pirard R, Blacher S, Brouers F, Pirard JP (1995) Interpretation of mercury porosimetry applied to aerogels. J Mater Res 10:2114–2119

    Article  CAS  Google Scholar 

  29. Lee KY, Bismarck A (2012) Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid. Cellulose 19:891–900

    Article  CAS  Google Scholar 

  30. Wong S-S, Kasapis S, Tan YM (2009) Bacterial and plant cellulose modification using ultrasound irradiation. Carbohydr Polym 77:280–287

    Article  CAS  Google Scholar 

  31. Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74:659–665

    Article  CAS  Google Scholar 

  32. Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim 87:815–818

    Article  CAS  Google Scholar 

  33. Vittadini E, Dickinson LC, Chinachoti P (2001)) 1H and 2H NMR mobility in cellulose. Carbohydr Polym 46:49–57

    Article  CAS  Google Scholar 

  34. Ford JL (1999) Thermal analysis of hydroxypropylmethylcellulose and methylcellulose: powders, gels and matrix tablets. Int J Pharm 179:209–228

    Article  CAS  PubMed  Google Scholar 

  35. Hancock BC, Zografi G (1994) The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res 11:471–477

    Article  CAS  PubMed  Google Scholar 

  36. Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2011) Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym 83:1279–1284

    Article  CAS  Google Scholar 

  37. Jandura P, Riedl B, Kokta BV (2000) Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids. Polym Degrad Stab 70:387–394

    Article  CAS  Google Scholar 

  38. Hou G, Li N, Han H, Huo L, Gao J (2015) Hybrid cationic ring-opening polymerization of epoxy resin/glycidyloxypropyl-polyhedral oligomeric silsesquioxane nanocomposites and dynamic mechanical properties. Iran Polym J 24:299–307

    Article  CAS  Google Scholar 

  39. Goodarzi V, Kokabi M, Razzaghi Kashani M, Bahramian AR (2014) Prediction of long-term mechanical properties of PVDF/BaTiO3 nanocomposite. J Appl Polym Sci 131:40596. https://doi.org/10.1002/app.40596

    Article  CAS  Google Scholar 

  40. Pothan LA, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol 63:283–293

    Article  CAS  Google Scholar 

  41. Nair KCM, Thomas S, Groeninckx G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol 61:2519–2529

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tarbiat Modares University and Iran Nanotechnology Initiative Council (INIC) for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Kokabi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 184 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, H., Kokabi, M. & Mousavi, S.M. Dynamic mechanical properties of bacterial cellulose nanofibres. Iran Polym J 27, 433–443 (2018). https://doi.org/10.1007/s13726-018-0621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0621-x

Keywords

Navigation