Skip to main content
Log in

Effects of gamma irradiation on properties of PLA/flax composites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) is a well-known renewable and biodegradable polymer but is still limited by its low heat distortion temperature and brittleness. In this study, a PLA/flax composite containing flax fiber strands (5 wt%) was prepared through melt-compounding process followed by gamma irradiation at doses ranging from 0 to 20 kGy in the presence of a small amount of triallyl isocyanurate (TAIC) as cross-linking agent. The gel fraction of the composite was tested, and the datum showed that the gel fraction sharply increased first, and then slightly decreased with increasing irradiation dose. Gamma irradiation induced cross-linking of the polymer to form a three-dimensional network in the PLA/flax composite system. Irradiated composite could only swell instead of dissolving completely in chloroform, and the swollen morphology correlated with irradiation dose. The thermal stability of the PLA/flax composite was characterized using thermogravimetric analysis (TGA) temperature, and dimensional stability. Overall, irradiation modification improved the thermal resistance and dimensional stability of PLA composites. The mechanical property tests of the irradiated composites revealed increased tensile and impact strengths, reduced elongation-at-break, and unchanged tensile modulus. The analysis of water absorption of the composite demonstrated that the irradiation cross-linking induced no obvious effect on water absorption. Irradiation cross-linking modification cannot change the hydrophilicity or hydrophobicity of PLA composites. Overall, these findings look promising for future use in reinforcement and improvement of the thermal resistance of PLA/flax composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mangaraj S, Yadav A, Bal LM, Dash SK, Mahanti NK (2019) Application of biodegradable polymers in food packaging industry: a comprehensive review. J Package Technol Res 3:77–96

    Google Scholar 

  2. Diomede F, Gugliandolo A, Cardelli P, Merciaro I, Ettorre V, Traini T, Bedini R, Scionti D, Bramanti A, Nanci A, Caputi S, Fontana A, Mazzon E, Trubiani O (2018) Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair. Stem Cell Res Ther 9:1–21

    Google Scholar 

  3. Li S, Zhao S, Hou Y, Chen G, Chen Y, Zhang Z (2020) Polylactic acid (PLA) modified by polyethylene glycol(PEG) for the immobilization of lipase. Appl Biochem Biotechnol 190:982–996

    CAS  Google Scholar 

  4. Song HJ, Chen XD, Fan JC, Xu QJ (2019) Balanced strength and toughness improvement in polylactide (PLA)/poly(1,4-cyclohexylene dimethylene terephthalate glycol) (PCTG) blends using various compatibilizers. Iran Polym J 28:991–999

    CAS  Google Scholar 

  5. Yang Y, Zhang L, Xiong Z, Tang Z, Zhang R, Zhu J (2016) Research progress in the heat resistance, toughening and filling modification of PLA. Sci China Chem 59:1355–1368

    CAS  Google Scholar 

  6. Ketabchi MR, Ratnam CT, Khalid M, Walvekar R (2018) Mechanical properties of polylactic acid/synthetic rubber blend reinforced with cellulose nanoparticles isolated from kenaf fibres. Polym Bull 75:809–827

    CAS  Google Scholar 

  7. Phetwarotai W, Phusunti N, Aht-Ong D (2019) Preparation and characteristics of poly(butylene adipate-co-terephthalate)/polylactide blend films via synergistic efficiency of plasticization and compatibilization. Chin J Polym Sci 37:68–78

    CAS  Google Scholar 

  8. Saravana S, Kandaswamy R (2019) Investigation on the mechanical and thermal properties of PLA/calcium silicate biocomposites for injection molding applications. Silicon 11:1143–1150

    CAS  Google Scholar 

  9. Hao Y, Liu Z, ZhangH WuY, Xiao Y, Li Y, Tong Y (2019) Effect of reactive group types on the properties of poly(ethylene octane) toughened poly(lactic acid). J Polym Res 26:1–10

    CAS  Google Scholar 

  10. Zhao X, Wu T, Peng S (2018) Synthesis and photoinitiated crosslinking of active poly(lactic acid) materials. J Wuhan Univ Technol-Mat Sci Edit 33:1239–1246

    CAS  Google Scholar 

  11. Kudryavtseva VL, Bolbasov EN, Ponomarev DV, Remnev GE, Tverdokhlebov SI (2018) The influence of pulsed electron beam treatment on properties of PLLA nonwoven materials produced by solution blow spinning. Bio Nano Sci 8:131–139

    Google Scholar 

  12. Mahantesha BK, Ravindrachary V, Padmakumari R, Sahanakumari R, Tegginamata P, Sanjeev G, Petwal VC, Verma VP (2019) Effect of electron irradiation on optical, thermal and electrical properties of polymer electrolyte. J Radioanal Nucl Chem 322:19–27

    CAS  Google Scholar 

  13. Sunitha VR, Radhakrishnan S (2019) Gamma irradiation effects on conductivity and dielectric behavior of PEO-based nano-composite polymer electrolyte systems. Polym Bull 77:655–670

    Google Scholar 

  14. Rytlewski P, Malinowski R, Moraczewski K, Zenkiewicz M (2010) Influence of some cross-linking agents on thermal and mechanical properties of electron beam irradiated polylactide. Radiat Phys Chem 79:1052–1057

    CAS  Google Scholar 

  15. Zaidi L, Bruzaud S, Kaci M, Bourmaud A, Gautier N, Grohens Y (2013) The effects of gamma irradiation on the morphology and properties of polylactide/cloisite 30B nanocomposites. Polym Degrad Stab 98:348–355

    CAS  Google Scholar 

  16. Kaczmarek H, Nowicki M, Vuković-Kwiatkowska I, Nowakowska S (2013) Crosslinked blends of poly(lactic acid) and polyacrylates: AFM, DSC and XRD studies. J Polym Res 20:1–12

    CAS  Google Scholar 

  17. Xia X, Liu W, Zhou L, Liu H, He S, Zhu C (2015) Study on flax fiber toughened poly(lactic acid) composites. J Appl Polym Sci 132:1–10

    Google Scholar 

  18. Xia X, Liu W, Zhou L, Hua Z, Liu H, He S (2016) Modification of flax fiber surface and its compatibilization in polylactic acid/flax composites. Iran Polym J 25:25–35

    CAS  Google Scholar 

  19. Xia X, Shi X, Liu W, Zhao H, Li H, Zhang Y (2017) Effect of flax fiber content on polylactic acid (PLA) crystallization inPLA/flax fiber composites. Iran Polym J26:693–702

    Google Scholar 

  20. Feng Y, Deng Q, Hu J, Peng C, Wu Q, Xu Z (2019) Study on gel weight fraction of ultraviolet-cured acrylic adhesives. Chem Pap 73:517–524

    Google Scholar 

  21. Dong W, Ma P, Wang S, Chen M, Cai X (2013) Effect of partial crosslinking on morphology and properties of the poly(b-hydroxy butyrate)/poly(D, L-lactic acid) blends. Polym Degrad Stabil 98:1549–1555

    CAS  Google Scholar 

  22. Poormohammadian SJ, Darvishi P, Dezfuli AMG, Bonyadi M (2018) Incorporation of functionalized silica nanoparticles into polymeric films for enhancement of water absorption and water vapor transition. Fiber Polym 19:2066–2079

    CAS  Google Scholar 

  23. Quynh TM, Mitomo H, Nagasawa N, Wada Y, Yoshii F, Tamada M (2007) Properties of crosslinked polylactides (PLLA & PDLA) by radiation and its biodegradability. Eur Polym J43:1779–1785

    Google Scholar 

  24. Shin BY, Han DH, Narayan R (2010) Rheological and thermal properties of the PLA modified by electron beam irradiation in the presence of functional monomer. J Polym Environ 18:558–566

    CAS  Google Scholar 

  25. Xu H, Fang H, Bai J, Zhang Y, Wang Z (2014) Preparation and characterization of high-melt-strength polylactide with long-chain branched structure through γ-radiation-induced chemical reactions. Ind Eng Chem Res 53:1150–1159

    CAS  Google Scholar 

  26. Cardoso ECL, Scagliusi SR, Lima LFCP, Bueno NR, Brant AJC, Parra DF, Lugão AB (2014) Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation. Radiat Phys Chem 94:249–252

    CAS  Google Scholar 

  27. Cardoso ECL, Oliveira RR, Machado GAF, Moura EAB (2017) Study of flexible films prepared from PLA/PBAT blend and PLA E-beam irradiated as compatibilizing agent. Charact Miner Metal Mater 14:121–129

    Google Scholar 

  28. Türker NS, Özer AY, Kutlu B, Nohutcu R, Sungur A, Bilgili H, Ekizoglu M, Özalp M (2014) The effect of gamma radiation sterilization on dental biomaterials. Open Tissue Eng Regen Med J11:341–349

    Google Scholar 

  29. Ge F, Ding Y, Yang L, Huang Y, Jiang L, Dan Y (2015) Effect of the content and distribution of ultraviolet absorbing groups on the UV protection and degradation of polylactide films. RSC Adv 5:70473–70481

    CAS  Google Scholar 

  30. Wang L, Wang Y, Huang Z, Weng Y (2015) Heat resistance, crystallization behavior, and mechanical properties of polylactide/nucleating agent composites. Mater Des 66:7–15

    CAS  Google Scholar 

  31. Simpson M, Gilmore BF, Miller A, Helt-Hansen J, Buchanan FJ (2014) Irradiation of bioresorbable biomaterials for controlled surface degradation. Radiat Phys Chem 94:211–216

    CAS  Google Scholar 

  32. Salvatore M, Marra A, Duraccio D, Shayanfar S, Pillai SD, Cimmino S, Silvestre C (2016) Effect of electron beam irradiation on the properties of polylactic acid/montmorillonite nanocomposites for food packaging applications. J Appl Polym Sci 133:1–12

    Google Scholar 

  33. Raghavendra SBS, Vinod B (2015) Effect of gamma irradiation on mechanical properties of natural fibers reinforced hybrid composites. IJSTE-Int J Sci Technol Eng 2:15–23

    Google Scholar 

  34. Ma H, Joo CW (2011) Influence of surface treatments on structural and mechanical properties of bamboo fiber-reinforced poly(lactic acid) biocomposites. J Compos Mater 45:2455–2463

    CAS  Google Scholar 

  35. Ji SG, Cho D, Park WH, Lee BC (2010) Electron beam effect on the tensile properties and topology of jute fibers and the interfacial strength of jute-PLA green composites. Macromol Res 18:919–922

    CAS  Google Scholar 

  36. Malinowski R (2016) Application of the electron radiation and triallyl isocyanurate for production of aliphatic-aromatic co-polyester of modified properties. Int J Adv Manuf Technol 87:3307–3314

    Google Scholar 

  37. Rytlewski P, Stepczyńska M, Gohs U, Malinowskic R, Budnerd B, Żenkiewicz M (2018) Flax fibres reinforced polylactide modified by ionizing radiation. Ind Crop Prod 112:716–723

    CAS  Google Scholar 

  38. Hachana N, Wongwanchai TW, Chaochanchaikul K, Harnnarongchai W (2017) Influence of crosslinking agent and chain extender on properties of gamma-irradiated PLA. J Polym Environ 25:323–333

    CAS  Google Scholar 

  39. Ng HM, Bee ST, Ratnam CT, Sin LT, Phang YY, Tee TT, Rahmat AR (2014) Effectiveness of trimethylopropane trimethacrylate for the electron-beam-irradiation-induced cross-linking of polylactic acid. Nucl Instrum Meth B319:62–70

    Google Scholar 

  40. Bee ST, Ratnam CT, Sin LT, Tee TT, Wong WK, Lee JX, Rahmat AR (2014) Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends. Nucl Instrum Meth B334:18–27

    Google Scholar 

  41. Razavi SM, Dadbin S, Frounchi M (2014) Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films. Radiat Phys Chem 96:12–18

    CAS  Google Scholar 

  42. Jung CH, Hwang IT, Jung CH, Choi JH (2014) Preparation of flexible PLA/PEG-POSS nanocomposites by melt blending and radiation crosslinking. Radiat Phys Chem 102:23–28

    CAS  Google Scholar 

  43. Dadbin S, Kheirkhah Y (2014) Gamma irradiation of melt processed biomedical PDLLA/HAP nanocomposites. Radiat Phys Chem 97:270–274

    CAS  Google Scholar 

  44. Han YH, Han SO, Cho D, Kim HI (2007) Kenaf/polypropylene biocomposites: effects of electron beam irradiation and alkali treatment on kenaf natural fibers. Compos Interf 14:559–578

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Project of Pingdingshan Municipal Science and Technology Bureau (2017006(6.15)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Shi, X., Liu, W. et al. Effects of gamma irradiation on properties of PLA/flax composites. Iran Polym J 29, 581–590 (2020). https://doi.org/10.1007/s13726-020-00820-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00820-w

Keywords

Navigation