Skip to main content

Advertisement

Log in

Graphene nanoplatelets/organic wood dust hybrid composites: physical, mechanical and thermal characterization

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The widespread uses of natural fibre/filler-reinforced composites are the recent advanced trend in the research field. This study investigates the effects of a relatively low concentration of graphene nanoplatelets (GNPs) in microwood particles-reinforced epoxy composites to enhance their physical, mechanical, thermal and fracture properties.The hybrid composites were prepared with hand layup techniques with different weight percentages of wood particles (0, 2.5, 5, 7.5 and 10) at a constant 0.5% of GNPs. The surface modification of untreated and treated wood particles was analysed with X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy, showing that treated wood particles have a better interlocking bond with GNPs and epoxy matrix. The increments of 35.55% tensile strength, 30.64% flexural strength, 22.98% hardness, 41.67% impact strength, 16.05% conductivity, 26.71% fracture toughness and 74.38% fracture energy were recorded with WGPC-5.0 hybrid composites compared to WGPC-0. The maximum storage modulus (2.4 GPa) and loss modulus (0.26 GPa) also confirmed better interfacial bonding strength and stiffness for WGPC-5.0 hybrid composites with the highest glass transition temperature of 92 °C. The corrosion rate and water absorption properties were higher for the higher weight percent of wood particles.The morphological analysis confirmed that higher loading of wood particles (7.5–10%) resulted in agglomeration, thus weak bonding of particles with epoxy matrix and therefore decrements in the properties were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Naveen J, Jawaid M, Zainudin ES, Sultan MT, Yahaya R, Majid MA (2019) Thermal degradation and viscoelastic properties of Kevlar/Cocos nucifera sheath reinforced epoxy hybrid composites. Compos Struct 219:194–202

    Article  Google Scholar 

  2. Benito-González I, López-Rubio A, Martínez-Sanz M (2018) Potential of lignocellulosic fractions from Posidoniaoceanica to improve barrier and mechanical properties of bio-based packaging materials. Int J Biol Macromol 118:542–551

    Article  PubMed  CAS  Google Scholar 

  3. Chee SS, Jawaid M, Sultan MT, Alothman OY, Abdullah LC (2019) Evaluation of the hybridization effect on the thermal and thermo-oxidative stability of bamboo/kenaf/epoxy hybrid composites. J Therm Anal Calorim 137:55–63

    Article  CAS  Google Scholar 

  4. Scaffaro R, Maio A, Gulino EF, Megna B (2019) Structure-property relationship of PLA-Opuntia Ficus Indica biocomposites. Comps B Eng 167:199–206

    Article  CAS  Google Scholar 

  5. Väisänen T, Das O, Tomppo L (2017) A review on new bio-based constituents for natural fiber-polymer composites. J Clean Prod 149:582–596

    Article  CAS  Google Scholar 

  6. Mittal V, Saini R, Sinha S (2016) Natural fiber-mediated epoxy composites—a review. Comps B Eng 99:425–435

    Article  CAS  Google Scholar 

  7. Lotfi A, Li H, Dao DV, Prusty G (2019) Natural fiber–reinforced composites: a review on material, manufacturing, and machinability. J Thermoplast Compos Mater 2019:0892705719844546

    Google Scholar 

  8. Sathish P, Kesavan R, Ramnath BV, Vishal C (2017) Effect of fiber orientation and stacking sequence on mechanical and thermal characteristics of banana-kenaf hybrid epoxy composite. SILICON 9:577–585

    Article  CAS  Google Scholar 

  9. Nagarajan V, Mohanty AK, Misra M (2016) Biocomposites with size-fractionated biocarbon: Influence of the microstructure on macroscopic properties. ACS Omega 1:636–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dinesh S, Kumaran P, Mohanamurugan S, Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S, Bhat KS (2020) Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. J Polym Res 27:1–13

    Article  CAS  Google Scholar 

  11. Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos Part A Appl Sci Manuf 35:1267–1276

    Article  CAS  Google Scholar 

  12. Pothan LA, Cherian BM, Anandakutty B, Thomas S (2007) Effect of layering pattern on the water absorption behavior of banana glass hybrid composites. J Appl Polym Sci 105:2540–2548

    Article  CAS  Google Scholar 

  13. Sathishkumar TP, Naveen JA, Satheeshkumar S (2014) Hybrid fiber reinforced polymer composites-a review. J Reinf Plast 33:454–471

    Article  CAS  Google Scholar 

  14. ShravanabelagolaNagarajaSetty VK, Govardhan G, MavinkereRangappa S, Siengchin S (2021) Raw and chemically treated bio-waste filled (Limoniaacidissima shell powder) vinyl ester composites: physical, mechanical, moisture absorption properties, and microstructure analysis. J Vinyl Addit Technol 27:97–107

    Article  CAS  Google Scholar 

  15. Shravanabelagola NagarajaSetty VK, Goud G, Peramanahalli Chikkegowda S, Mavinkere Rangappa S, Siengchin S (2020) Characterization of chemically treated limonia Acidissima (wood apple) shell powder: physicochemical, thermal, and morphological properties. J Nat Fibers 20:1–12

    CAS  Google Scholar 

  16. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf 35:371–376

    Article  CAS  Google Scholar 

  17. Arpitha GR, Sanjay MR, Senthamaraikannan P, Barile C, Yogesha B (2017) Hybridization effect of sisal/glass/epoxy/filler based woven fabric reinforced composites. Exp Technol 41:577–584

    Article  Google Scholar 

  18. Hossain MK, Chowdhury MM, Bolden NW (2016) Processing and performance evaluation of amine functionalized graphene nanoplatelet reinforced epoxy composites. J Mater Sci Eng A 6:117–130

    CAS  Google Scholar 

  19. Geng Y, Liu MY, Li J, Shi XM, Kim JK (2008) Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos Part A Appl Sci Manuf 39:1876–1883

    Article  CAS  Google Scholar 

  20. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  21. Wang F, Drzal LT, Qin Y, Huang Z (2015) Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50:1082–1093

    Article  CAS  Google Scholar 

  22. Chaharmahali M, Hamzeh Y, Ebrahimi G, Ashori A, Ghasemi I (2014) Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Poly Bull 71:337–349

    Article  CAS  Google Scholar 

  23. Ganapathy T, Sathiskumar R, Sanjay MR, Senthamaraikannan P, Saravanakumar SS, Parameswaranpillai J, Siengchin S (2019) Effect of graphene powder on banyan aerial root fibers reinforced epoxy composites. J Nat Fibers 10:1–8

    Google Scholar 

  24. Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem 113:9921–9927

    CAS  Google Scholar 

  25. Díez-Pascual AM, Luceño Sánchez JA, Pena Capilla R, Garcia Diaz P (2018) Recent developments in graphene/polymer nanocomposites for application in polymer solar cells. Polymers 10:217

    Article  PubMed Central  CAS  Google Scholar 

  26. Tong L, Qiu F, Zeng T, Long J, Yang J, Wang R, Zhang J, Wang C, Sun T, Yang Y (2017) Recent progress in the preparation and application of quantum dots/graphene composite materials. RSC Adv 7:47999–48018

    Article  CAS  Google Scholar 

  27. Lü WH, Zhao GJ, Xue ZH (2006) Preparation and characterization of wood/montmorillonite nanocomposites. For Stud China 8:35

    Article  CAS  Google Scholar 

  28. Pascual J, Fages E, Fenollar O, García D, Balart R (2009) Influence of the compatibilizer/nanoclay ratio on final properties of polypropylene matrix modified with montmorillonite-based organoclay. Polym Bull 62:367–380

    Article  CAS  Google Scholar 

  29. Ashori A, Nourbakhsh A (2009) Effects of nanoclay as a reinforcement filler on the physical and mechanical properties of wood-based composite. J Compos Mater 43:1869–1875

    Article  Google Scholar 

  30. Idumah CI, Hassan A, Bourbigot S (2017) Influence of exfoliated grapheme nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites. J Anal Appl Pyrolysis 123:65–72

    Article  CAS  Google Scholar 

  31. Scaffaro R, Maio A, Gulino EF, Pitarresi G (2020) Lignocellulosic fillers and grapheme nanoplatelets as hybrid reinforcement for polylactic acid: effect on mechanical properties and degradability. Compos Sci Technol 190:108008

    Article  CAS  Google Scholar 

  32. Sheshmani S, Ashori A, Fashapoyeh MA (2013) Wood plastic composite using graphene nanoplatelets. Int J Biol Macromol 58:1–6

    Article  CAS  PubMed  Google Scholar 

  33. Park YT, Qian Y, Chan C, Suh T, Nejhad MG, Macosko CW, Stein A (2015) Epoxy toughening with low graphene loading. Adv Funct Mater 25:575–585

    Article  CAS  Google Scholar 

  34. Rybak A, Jarosinski L, Gaska K, Kapusta C (2018) Graphene nanoplatelets-silica hybrid epoxy composites as electrical insulation with enhanced thermal conductivity. Polym Compos 39:1682–1691

    Article  CAS  Google Scholar 

  35. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302

    Article  CAS  Google Scholar 

  36. Hemath M, MavinkereRangappa S, Kushvaha V, Dhakal HN, Siengchin S (2020) A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polym Compos 41:3940–3965

    Article  CAS  Google Scholar 

  37. Kumar A, Sharma K, Dixit AR (2020) Carbon nanotube-and graphene-reinforced multiphase polymeric composites: review on their properties and applications. J Mater Sci 55:2682–2724

    Article  CAS  Google Scholar 

  38. Bledzki AK, Fink HP, Specht K (2004) Unidirectional hemp and flax EP-and PP-composites: influence of defined fiber treatments. J Appl Polym Sci 93:2150–2156

    Article  CAS  Google Scholar 

  39. Mishra S, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) Graft copolymerization of acrylonitrile on chemically modified sisal fibers. Macromol Mater Eng 286:107–113

    Article  CAS  Google Scholar 

  40. Sumrith N, Techawinyutham L, Sanjay MR, Dangtungee R, Siengchin S (2020) Characterization of alkaline and silane treated fibers of ‘water hyacinth plants’ and reinforcement of ‘water hyacinth fibers’ with bioepoxy to develop fully biobased sustainable ecofriendly composites. J Polym Environ 28:2749–2760

    Article  CAS  Google Scholar 

  41. Rajeshkumar G, Hariharan V, Indran S, Sanjay MR, Siengchin S, Maran JP, Al-Dhabi NA, Karuppiah P (2021) Influence of sodium hydroxide (NaOH) treatment on mechanical properties and morphological behaviour of phoenix sp. fiber/epoxy composites. J Polym Environ 29:765–774

    Article  CAS  Google Scholar 

  42. Madhu P, Sanjay MR, Jawaid M, Siengchin S, Khan A, Pruncu CI (2020) A new study on effect of various chemical treatments on Agave Americana fiber for composite reinforcement: physico-chemical, thermal, mechanical and morphological properties. Polym Test 85:106437

    Article  CAS  Google Scholar 

  43. Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydr Polym 207:108–121

    Article  CAS  Google Scholar 

  44. Segal LG, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  45. Goudar S, Jain RK, Das D (2020) Physico-mechanical properties of tamarind pod shell-based composite. Polym Compos 41:505–521

    Article  CAS  Google Scholar 

  46. Jones RM (1998) Mechanics of composite materials. CRC, New York

    Google Scholar 

  47. Singh B, Gupta M, Verma A (1995) Mechanical behaviour of particulate hybrid composite laminates as potential building materials. Constr Build Mater 9:39–44

    Article  Google Scholar 

  48. Jayamani E, Rahman MR, Benhur DA, Bakri MK, Kakar A, Khan A (2020) Comparative study of fly ash/sugarcane fiberreinforced polymer composites properties. Bio Resour 15:5514–5531

    CAS  Google Scholar 

  49. Miller A, Brown C, Warner G (2019) Guidance on the use of existing ASTM polymer testing standards for ABS parts fabricated using FFF. Smart Sustain Manuf Syst 17:3

    Google Scholar 

  50. Mosavi-Mirkolaei ST, Najafi SK, Tajvidi M (2019) Physical and mechanical properties of wood-plastic composites made with microfibrillar blends of LDPE, HDPE and PET. Fibers Polym 20:2156–2165

    Article  CAS  Google Scholar 

  51. Costa UO, Nascimento LF, Garcia JM, Bezerra WB, Monteiro SN (2020) Evaluation of Izod impact and bend properties of epoxy composites reinforced with mallow fibers. J Mater 9:373–382

    CAS  Google Scholar 

  52. Abdulhameed N, Angus B, Wanamaker J, Mecholsky JJ Jr (2020) Quantitative fractography as a novel approach to measure fracture toughness of direct resin composites. J Mech Behav Biomed Mater 15:103857

    Article  CAS  Google Scholar 

  53. ASTM E1 (2011) Standard test method for evaluating the resistance to thermal transmission of materials by the guarded heat flow meter technique

  54. Deng S, Hou M, Ye L (2007) Temperature-dependent elastic moduli of epoxies measured by DMA and their correlations to mechanical testing data. Polym Test 26:803–813

    Article  CAS  Google Scholar 

  55. Chandekar H, Chaudhari V, Waigaonkar S, Mascarenhas A (2020) Effect of chemical treatment on mechanical properties and water diffusion characteristics of jute-polypropylene composites. Polym Compos 41:1447–1161

    Article  CAS  Google Scholar 

  56. Santos AG, Rincón JM, Romero M, Talero R (2005) Characterization of a polypropylene fibered cement composite using ESEM, FESEM and mechanical testing. Constr Build Mater 19:396–403

    Article  Google Scholar 

  57. Poletto M, Ornaghi HL, Zattera AJ (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeter Biodeg 52:151–160

    Article  CAS  Google Scholar 

  59. Kučerová V, Lagaňa R, Výbohová E, Hýrošová T (2016) The effect of chemical changes during heat treatment on the color and mechanical properties of firewood. Bio Resources 11:9079–9094

    Google Scholar 

  60. Denis PA, Huelmo CP, Iribarne F (2019) Cycloaddition reactions on epitaxial graphene. New J Chem 43:11251–11257

    Article  CAS  Google Scholar 

  61. Kumar A, Sharma K, Dixit AR (2020) A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett 12:1–7

    Google Scholar 

  62. Madsen B, Lilholt H (2003) Physical and mechanical properties of unidirectional plant fibre composites-an evaluation of the influence of porosity. Compos Sci Technol 63:1265–1272

    Article  CAS  Google Scholar 

  63. Cavdar AD, Mengeloğlu F, Karakus K (2015) Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement 60:6–12

    Article  Google Scholar 

  64. Sarki J, Hassan SB, Aigbodion VS, Oghenevweta JE (2011) Potential of using coconut shell particle fillers in eco-composite materials. J Alloys Compd 509:2381–2385

    Article  CAS  Google Scholar 

  65. Pérez E, Famá L, Pardo SG, Abad MJ, Bernal C (2012) Tensile and fracture behaviour of PP/wood flour composites. Compos B Eng 43:2795–2800

    Article  CAS  Google Scholar 

  66. Abdullah NM, Ahmad I (2013) Potential of using polyester reinforced coconut fiber composites derived from recycling polyethylene terephthalate (PET) waste. Fibers Polym 14:584–590

    Article  CAS  Google Scholar 

  67. Alamri H, Low IM, Alothman Z (2012) Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos B Eng 43:2762–2771

    Article  CAS  Google Scholar 

  68. Prolongo SG, Moriche R, Jiménez-Suárez A, Sánchez M, Ureña A (2014) Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins. Eur Polym J 61:206–214

    Article  CAS  Google Scholar 

  69. Kumar A, Sharma K, Dixit AR (2019) A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J Mater Sci 54:5992–6026

    Article  CAS  Google Scholar 

  70. Sudheer M, Prabhu R, Raju K, Bhat T (2014) Effect of filler content on the performance of epoxy/PTW composites. Adv Mater Sci Eng 27:2014

    Google Scholar 

  71. Kokta BV, Raj RG, Daneault C (1989) Use of wood flour as filler in polypropylene: studies on mechanical properties. Polym Plast Technol Eng 28:247–259

    Article  CAS  Google Scholar 

  72. Onuegbu GC, Igwe IO (2011) The effects of filler contents and particle sizes on the mechanical and end-use properties of snail shell powder filled polypropylene. Mater Sci Appl 2:810

    Google Scholar 

  73. Gokul K, Prabhu TR, Rajasekaran T (2017) Processing and evaluation of mechanical properties of sugarcane fiber reinforced natural composites. Trans Indian Inst Met 70:2537–2546

    Article  CAS  Google Scholar 

  74. Ray D, Sarkar BK, Rana AK, Bose NR (2001) Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 24:129–135

    Article  CAS  Google Scholar 

  75. Saha A, Kumar S, Kumar A (2021) Influence of pineapple leaf particulate on mechanical, thermal and biodegradation characteristics of pineapple leaf fiber reinforced polymer composite. J Polym Res 28:1–23

    Article  CAS  Google Scholar 

  76. Agari Y, Uno T (1985) Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. J Appl Polym Sci 30:2225–2235

    Article  CAS  Google Scholar 

  77. Yan H, Tang Y, Long W, Li Y (2014) Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets. J Mater Sci 49:5256–5264

    Article  CAS  Google Scholar 

  78. Prasob PA, Sasikumar M (2019) Viscoelastic and mechanical behaviour of reduced graphene oxide and zirconium dioxide filled jute/epoxy composites at different temperature conditions. Mater Today Commun 19:252–261

    Article  CAS  Google Scholar 

  79. Jesuarockiam N, Jawaid M, Zainudin ES, Thariq Hameed Sultan M, Yahaya R (2019) Enhanced thermal and dynamic mechanical properties of synthetic/natural hybrid composites with graphene nanoplateletes. Polymers 11:1085

    Article  PubMed Central  CAS  Google Scholar 

  80. Md Shah AU, Sultan MT, Jawaid M (2019) Sandwich-structured bamboo powder/glass fibre-reinforced epoxy hybrid composites: mechanical performance in static and dynamic evaluations. J Sandw Struct Mater 2019:1099636218822740

    Google Scholar 

  81. Rasana N, Jayanarayanan K, Deeraj BD, Joseph K (2019) The thermal degradation and dynamic mechanical properties modeling of MWCNT/glass fiber multiscale filler reinforced polypropylene composites. Compos Sci Technol 169:249–259

    Article  CAS  Google Scholar 

  82. Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159

    Article  CAS  Google Scholar 

  83. Zeltmann SE, Kumar BB, Doddamani M, Gupta N (2016) Prediction of strain rate sensitivity of high-density polyethylene using integral transform of dynamic mechanical analysis data. Polymer 101:1–6

    Article  CAS  Google Scholar 

  84. Li Y, Jahr H, Lietaert K, Pavanram P, Yilmaz A, Fockaert LI, Leeflang MA, Pouran B, Gonzalez-Garcia Y, Weinans H, Mol JM (2018) Additively manufactured biodegradable porous iron. Acta Biomater 77:380–393

    Article  CAS  PubMed  Google Scholar 

  85. Gharagozlou M, Ramezanzadeh B, Baradaran Z (2016) Synthesize and characterization of novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4–SiO2) to improve the corrosion protection performance of epoxy coating. Appl Surf Sci 377:86–98

    Article  CAS  Google Scholar 

  86. Ichazo MN, Albano C, Gonzalez J, Perera R, Candal AM (2001) Polypropylene/wood flour composites: treatments and properties. Compos Struct 54:207–214

    Article  Google Scholar 

  87. Wang W, Guo X, Zhao D, Liu L, Zhang R, Yu J (2020) Water absorption and hygrothermal aging behavior of wood-polypropylene composites. Polymers 12:782

    Article  CAS  PubMed Central  Google Scholar 

  88. Wang X, Jin J, Song M (2013) An investigation of the mechanism of graphene toughening epoxy. Carbon 65:324–333

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge and thankful to CIF-IIT Guwahati and ACMS-IIT Kanpur for proving the necessary technical testing facilities to carry out the research work.

Funding

This research study has not received any funding from any particular organization as well as no any contribution from public, commercial and profit sectors organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abir Saha.

Ethics declarations

Conflict of interest

The authors confirm that there are no possible conflicts of interest concerning the authorship, investigation and/or publication of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Saha, A. Graphene nanoplatelets/organic wood dust hybrid composites: physical, mechanical and thermal characterization. Iran Polym J 30, 935–951 (2021). https://doi.org/10.1007/s13726-021-00946-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00946-5

Keywords

Navigation