Skip to main content
Log in

Kinetic features of ethylene polymerization over titanium–magnesium catalysts with different structures and morphology

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Establishing a relationship between structural characteristics of a catalyst system and morphology of polymer particles, on the one hand, and the kinetic characteristics of the catalysts in relation to the molecular weight of the resulting polymer on the other hand, is an important scientific task and has considerable applications. In this paper, for the first time, data on the formation of polyethylene particles with different molecular weights and different morphologies on two samples of highly active supported titanium–magnesium catalysts (TMC) having different textural characteristics (pore structure and crystallite size) are obtained. It is shown that this effect persists with varying polymerization conditions (polymerization temperature, the presence and absence of hydrogen as a polymer chain transfer agent) and titanium content in the catalyst. The discussion of possible causes of the revealed differences in molecular weight of the produced polymers is based on the kinetic data and morphological analysis of the polymer particles formed on TMCs with different structural characteristics and titanium contents. The formation of PE with different molecular weights over these catalysts may be related to different concentrations of ethylene in the subsurface layer of polymer near active sites of the catalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hock C (1966) How titanium chloride catalysts control the texture of as-polymerized polypropylene. J Polym Sci Part A-1 Polym Chem 4:3055–3064

    Article  CAS  Google Scholar 

  2. Bukatov G, Zaikovskii V, Zakharov V, Kryukova G, Fenelonov V, Zagrafskaya R (1982) Morphology of polypropylene granulae and their relation with texture of titanium trichloride. Vysokomol Soedin Seriya A 24:542–548

    CAS  Google Scholar 

  3. Kakugo M, Sadatoshi H, Sakai J, Yokoyama M (1989) Growth of polypropylene particles in heterogeneous Ziegler–Natta polymerization. Macromolecules 22:3172–3177

    Article  CAS  Google Scholar 

  4. Vestberg T, Denifl P, Wilen CE (2008) Porous versus novel compact Ziegler–Natta catalyst particles and their fragmentation during the early stages of bulk propylene polymerization. J Appl Polym Sci 110:2021–2029

    Article  CAS  Google Scholar 

  5. Boor J (1979) Ziegler–Natta catalysts and polymerization. Academic, New York

    Google Scholar 

  6. Bohm L (2003) The ethylene polymerization with Ziegler catalysts: fifty years after the discovery. Angew Chem Int Ed 42:5010–5030

    Article  Google Scholar 

  7. Jamjah R, Zohuri G, Vaezi J, Ahmadjo S, Nekomanesh M, Pouryari M (2006) Morphological study of spherical MgCl2nEtOH supported TiCl4 Ziegler–Natta catalyst for polymerization of ethylene. J Appl Polym Sci 101:3829–3834

    Article  CAS  Google Scholar 

  8. Zheng X, Pimplapure MS, Weickert G, Loos J (2006) Influence of copolymerization on fragmentation behavior using Ziegler–Natta catalysts. Macromol Rapid Commun 27:15–20

    Article  Google Scholar 

  9. Abboud M, Denifl P, Reichert KH (2005) Fragmentation of Ziegler–Natta catalyst particles during propylene polymerization. Macromol Mater Eng 290:558–564

    Article  Google Scholar 

  10. Taniike T, Thang VQ, Binh NT, Hiraoka Y, Uozumi T, Terano M (2011) Initial particle morphology development in Ziegler–Natta propylene polymerization tracked with stopped-flow technique. Macromol Chem Phys 212:723–729

    Article  CAS  Google Scholar 

  11. Ferrero MA, Chiovetta MG (1991) Catalyst fragmentation during propylene polymerization: Part III. Bulk polymerization process simulation. Polym Eng Sci 31:886–903

    Article  CAS  Google Scholar 

  12. Zhang Z, Jiang BY, He F, Fu Z, Xu J, Fan Z (2019) Comparative study on kinetics of ethylene and propylene polymerizations with supported Ziegler–Natta catalyst: catalyst fragmentation promoted by polymer crystalline lamellae. Polymers 11:358

    Article  PubMed Central  Google Scholar 

  13. Zheng WP, Ma YP, Du DL, He AH, Shao HF, Liu CG (2021) Polymerization kinetics of propylene with the MgCl2-supported Ziegler–Natta catalyst-active centers with different tacticity and fragmentation of the catalyst. Chin J Polym Sci 39:70–80

    Article  CAS  Google Scholar 

  14. Soares JBP, McKenna TFL (2012). In: Soares JBP, McKenna TFL (eds) Polyolefin reaction engineering modeling. Wiley, Weinheim

    Chapter  Google Scholar 

  15. McKenna TF, Soares JBP (2001) Single particle modelling for olefin polymerization on supported catalysts: a review and proposals for future developments. Chem Eng Sci 56:3931–3949

    Article  CAS  Google Scholar 

  16. Nagel E, Kirilov V, Ray W (1980) Prediction of molecular weight distributions for high-density polyolefins. Ind Eng Chem Prod Res Dev 19:372

    Article  CAS  Google Scholar 

  17. Hutchinson RA, Chen CM, Ray WH (1992) Polymerization of olefins through heterogeneous catalysis X: modeling of particle growth and morphology. J Appl Polym Sci 44:1389–1414

    Article  CAS  Google Scholar 

  18. Floyd S, Heiskanen T, Taylor TW, Mann GE, Ray WH (1987) Polymerization of olefins through heterogeneous catalysis. VI. Effect of particle heat and mass transfer on polymerization behavior and polymer properties. J Appl Polym Sci 33:1021

    Article  CAS  Google Scholar 

  19. Silva FM, Broyer JP, Novat C, Lima EL, Pinto JC, McKenna TF (2005) Investigation of catalyst fragmentation in gas-phase olefin polymerisation: a novel short stop reactor. Macromol Rapid Commun 26:1846–1853

    Article  CAS  Google Scholar 

  20. McKenna T, Mattioli V (2001) Progress in describing particle growth for polyolefins: a look at particle morphology. Macromol Symp 173:149–162

    Article  CAS  Google Scholar 

  21. Hamba M, Han-Adebekun GC, Ray WH (1997) Kinetic study of gas phase olefin polymerization with a TiCl4/MgCl2 catalyst. II. Kinetic parameter estimation and model building. J Polym Sci Part A Polym Chem 35:2075–2096

    Article  CAS  Google Scholar 

  22. Hoel EL, Cozewith C, Byrne GD (1994) Effect of diffusion on heterogeneous ethylene propylene copolymerization. AIChE J 40:1669–1684

    Article  CAS  Google Scholar 

  23. Skomorokhov VB, Zakharov VA, Bukatov GD, Kirilov VA, Kryukova GN (1987) Research of processes of mass-transfer at polymerization of olefins over solid highly active catalysts. Polym Sci USSR 29:979–986

    Article  Google Scholar 

  24. Skomorokhov VB, Zakharov VA, Kirilov VA, Bukatov GD (1989) Research of processes of mass-transfer at polymerization of olefins over solid catalysts for bi-disperse models. Polym Sci USSR 31:1420–1429

    Article  Google Scholar 

  25. Alizadeh A, McKenna TFL (2017) Particle growth during the polymerisation of olefins on supported catalysts: Part II. Current experimental understanding and modeling progresses on particle. Fragmentation, growth and morphology development. Macromol React Eng 12:1700027

    Article  Google Scholar 

  26. Alizadeh A, Sharif F, Ebrahimi M, McKenna TFL (2018) Modeling condensed mode operation for ethylene polymerization: Part III. Mass and heat transfer. Ind Eng Chem Res 57:6097–6114

    Article  CAS  Google Scholar 

  27. Zanoni S, Nikolopoulos N, Welle A, Vantomme A, Weckhuysen BM (2021) Early-stage particle fragmentation behavior of a commercial silica-supported metallocene catalysts. Cat Sci Technol 11:5335–5348

    Article  CAS  Google Scholar 

  28. Mikenas TB, Zakharov VA, Nikitin VE, Echevskaya LG, Matsko MA (2010) The new generation of supported Ziegler-type catalysts for polyethylene production. Russ J Appl Chem 83:2210–2219

    Article  CAS  Google Scholar 

  29. Mikenas TB, Zakharov VA, Nikitin VE, Echevskaya LG, Matsko MA (2011) Supported Ziegler type catalysts for production of polyethylene (PE): effect of the composition of the active component, the methods of its formation, and the use of modifying agents on catalytic activity and molecular structure of PE and copolymers of ethylene with α-olefins. Catal Ind 3:22–127

    Article  Google Scholar 

  30. Mikenas TB, Koshevoy EI, Cherepanova SV, Zakharov VA (2016) Study of the composition and morphology of new modifications of titanium–magnesium catalysts with improved properties in ethylene polymerization. J Polym Sci Part A Polym Chem 54:545–2558

    Article  Google Scholar 

  31. Mikenas T, Koshevoy E, Zakharov V (2017) Effect of the structure of titanium–magnesium catalysts on the morphology of polyethylene produced. J Polym Sci Part A Polym Chem 55:2298–2308

    Article  CAS  Google Scholar 

  32. Nikitin VE, Mikenas TB, Zakharov VA (2005) Catalyst preparation process and ethylene polymerization and ethylene-alpha-olefin copolymerization processes utilizing this catalyst. RU2257263 C1

  33. Zakharov VA, Mikenas TB, Nikitin VE, Mozgunova NV (2009) Catalyst and method of obtaining ultra-high molecular polyethylene using this catalyst. RU2346006 C1

  34. Echevskaya LG, Matsko MA, Mikenas TB, Nikitin VE, Zakharov VA (2006) Supported titanium–magnesium catalysts with different titanium content: kinetic peculiarities at ethylene homopolymerization and copolymerization and molecular weight characteristics of polyethylene. J Appl Polym Sci 102:5436–5442

    Article  CAS  Google Scholar 

  35. Mikenas TB, Koshevoy EI, Zakharov VA, Nikolaeva MI (2014) Formation of isolated titanium (III) ions as active sites of supported titanium–magnesium catalysts for polymerization of olefins. Macromol Chem Phys 215:1707–1720

    Article  CAS  Google Scholar 

  36. Koshevoy EI, Mikenas TB, Zakharov VA, Volodin AM, Kenzhin RM (2014) Formation of isolated titanium (III) ions in superactive titanium–magnesium catalysts with a low titanium content as active sites in ethylene polymerization. Catal Commun 48:38–40

    Article  CAS  Google Scholar 

  37. Koshevoy EI, Mikenas TB, Zakharov VA, Shubin AA, Barabanov AA (2016) Electron paramagnetic resonance study of the interaction of surface titanium species with AlR3 cocatalyst in supported Ziegler−Natta catalysts with a low titanium content. J Phys Chem Part C 120:1121–1129

    Article  CAS  Google Scholar 

  38. Natta G, Pasquon II (1959) Kinetics in stereospecific polymerization of α-olefins. Adv Catal 11:1–68

    CAS  Google Scholar 

  39. Nikolaeva MI, Mikenas TB, Matsko MA, Echevskaya LG, Zakharov VA (2011) Ethylene polymerization over supported titanium–magnesium catalysts: effect of polymerization parameters on the molecular weight and molecular weight distribution of polyethylene. J Appl Polym Sci 122:3092–3101

    Article  CAS  Google Scholar 

  40. Lawrence M, Jiang Y (2017). In: Amziane S, Collet F (eds) Bio-aggregates based building materials: state-of-the-art report of the RILEM technical Committee 236-BBM. Springer, Dordrecht

    Google Scholar 

  41. Merquior DM, Lima EL, Pinto JC (2003) Modeling of particle fragmentation in heterogeneous olefin polymerization reactions. Polym React Eng 11:133

    Article  CAS  Google Scholar 

  42. Vonk CC, Kortleve G (1967) X-ray small-angle scattering of bulk polyethylene. Kolloid-Z u Z Polymere 220:19–24

    Article  CAS  Google Scholar 

  43. Lu L, Alamo RG, Mandelkern L (1994) Lamellar thickness distributions in linear polyethylene and ethylene copolymers. Macromolecules 27:6571–6576

    Article  CAS  Google Scholar 

  44. Ermakov YI (1969) Oxide-chromium catalysts of deep polymerization. Nauka, Novosibirsk

    Google Scholar 

  45. Ermakov YI, Mikhalchenko VG, Beskov VS, Grabovskii YP, Emirova IV (1970) The role of transfer processes in gaseous phase polymerization of ethylene. Plast Massy 9:7–10

    Google Scholar 

  46. Grabtree JR, Grimsby FN, Nummelin AJ, Sketchley JM (1973) The role of diffusion in the Ziegler polymerization of ethylene. J Appl Polym Sci 17:959–976

    Article  Google Scholar 

  47. Kissin YI (2003) Multi-center nature of titanium-based Ziegler–Natta catalysts. Comparison of ethylene and propylene polymerization reactions. J Polym Sci Part A Polym Chem 41:1745–1758

    Article  CAS  Google Scholar 

  48. Moore SJ, Wanke SE (2001) Solubility of ethylene, 1-butene and 1-hexene in polyethylenes. Chem Eng Sci 56:4121–4129

    Article  CAS  Google Scholar 

  49. Sukulova VV, Barabanov AA, Mikenas TB, Matsko MA, Zakharov VA (2020) The kinetic study of ethylene polymerization over titanium–magnesium catalysts in the presence of hydrogen: the number and reactivity of active cites. Polym Sci Ser B 62:14–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Ministry of Science and Higher Education of the Russian Federation (project AAAA21-121011490008-3). The authors thank Alexandra Serkova for the SEM analysis of the samples, Marina Vanina and Elena Bessudnova for the analysis of molecular weight characteristics and DSC analysis of PE, and Tatiana Efimenko for the textural study of the PE samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana B. Mikenas.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikenas, T.B., Zakharov, V.A. & Matsko, M.A. Kinetic features of ethylene polymerization over titanium–magnesium catalysts with different structures and morphology. Iran Polym J 31, 471–484 (2022). https://doi.org/10.1007/s13726-021-01004-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-01004-w

Keywords

Navigation