Skip to main content
Log in

Groundwater flow and residence time in a karst aquifer using ion and isotope characterization

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In order to identify the origin of the main processes that affect the composition of groundwater in a karstic aquifer, a hydrogeochemical and isotopic study was carried out of water from numerous observation wells located in Sierra de Gador, a semiarid region in SE Spain. Several natural and anthropogenic tracers were used to calculate groundwater residence time within this complex aquifer system. Analysis of major ions enabled the principal geochemical processes occurring in the aquifer to be established, and the samples were classified into four distinctive solute groups according to this criterion. Dissolution of carbonate rocks determines the chemical composition of less mineralized water. In another group, the concurrent dissolution of dolomite and precipitation of calcite in gypsum-bearing carbonate aquifer, where the dissolution of relatively soluble gypsum controls the reaction, are the dominant processes. Marine intrusion results in highly mineralized waters and leads to base exchange reactions. The groundwater enrichment of minor and trace elements allowed classification of the samples into two classes that are linked to different flow patterns. One of these classes is influenced by a slow and/or deep regional flow, where the temperature is generally elevated. The influence of sulphate reduces by up to 40 % the barium concentration due to the barite precipitation. Isotope data (T, 14C) confirm the existence of recent local flows, and regional flow system, and ages of ground water may reach 8000 years. The importance of gypsum dissolution in this aquifer is proved by the δ34S content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Bassam AM, Khalil AR (2012) DurovPwin: a new version to plot the expanded Durov diagram for hydro-chemical data analysis. Comput Geosci 42:1–6

    Article  CAS  Google Scholar 

  • Al-Bassam AM, Awad HS, Al-Alawi JA (1997) DurovPlot a computer program for processing and plotting hydro-chemical data. Groundwater 35(2):362–367

    Article  CAS  Google Scholar 

  • Arribas A, Arribas A (1995) Caracteres metalogénicos y geoquímica isotópica del azufre y el plomo de los yacimientos de minerales metálicos del Sureste de España. Boletín Geológico y Minero 106(1):23–62

    Google Scholar 

  • Back W, Hanshaw BB, Plummer LN, Rahn PH, Rightmire CT, Rubin M (1983) Process and rate of dedolomitization: mass transfer and 14C dating in a regional carbonate aquifer. Geol Soc Am Bull 94:1415–1429

    Article  CAS  Google Scholar 

  • Barbieri M, Boschetti T, Petitta M, Tallini M (2005) Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, central Italy). Appl Geochem 20:2063–2081

    Article  CAS  Google Scholar 

  • Bottrell S, Tellam J, Bartlett R, Hughes A (2008) Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK. Appl Geochem 23:2382–2394

    Article  CAS  Google Scholar 

  • Caetano Bicalho C, Batiot-Guilhe C, Seidel JL, Van Exter S, Jourde H (2012) Geochemical evidence of water source characterization and hydrodynamic responses in a karst aquifer. J Hydrol 450–451:206–218

    Article  Google Scholar 

  • Chiodini G, Frondini F, Marini L (1995) Theoretical geothermometers and pCO2 indicators for aqueous solution coming from hydrothermal systems of medium-low temperature hosted in carbonate–evaporite rocks. Application to the thermal springs of the Etruscan Swell, Italy. Appl Geochem 10:337–346

    Article  CAS  Google Scholar 

  • Daniele L, Vallejos A, Corbella M, Molina L, Pulido-Bosch A (2013a) Geochemical simulations to assess water–rock interactions in complex carbonate aquifers: the case of Aguadulce (SE Spain). Appl Geochem 29:43–54

    Article  CAS  Google Scholar 

  • Daniele L, Corbella M, Vallejos A, Diaz-Puga M, Pulido-Bosch A (2013b) Geochemical simulations to assess the fluorine origin in Sierra de Gador groundwater. J Geofluids 13(2):221–231

    Article  Google Scholar 

  • Deike RG (1990) Dolomite dissolution rates and possible Holocene dedolomitization of water-bearing units in the Edwards aquifer, South-Central Texas. J Hydrol 112:335–373

    Article  Google Scholar 

  • Emrich K, Ehhalt D, Vogel JC (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet Sci Lett 8:363–371

    Article  CAS  Google Scholar 

  • Fontes JC, Garnier JM (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15(2):399–413

    Article  Google Scholar 

  • García-Lorenzo ML, Martínez-Sánchez MJ, Pérez-Sirvent C, Agudo I, Recio C (2014) Isotope geochemistry of waters affected by mining activities in Sierra Minera and Portman Bay (SE, Spain). Appl Geochem 51:139–147

    Article  Google Scholar 

  • Giménez-Forcada E, Vega-Alegre M (2015) Arsenic, barium, strontium and uranium geochemistry and their utility as tracers to characterize groundwaters from the Espadán-Calderona Triassic Domain, Spain. Sci Total Environ 512–513:599–612

    Article  Google Scholar 

  • Gonfiantini R, Frohlich K, Araguas-Araguas L, Rozanski K (1998) Isotopes in groundwater hydrology. In: Kendall C, McDonnell J (eds) Isotope tracers in catchment hydrology. Elservier, Amsterdam, pp 203–246

    Chapter  Google Scholar 

  • Hanor JS (2004) A model for the origin of large carbonate- and evaporite-hosted celestine (SrSO4) deposits. J Sediment Res 74:168–175

    Article  CAS  Google Scholar 

  • Hosono T, Delinom R, Nakano T, Kagabu M, Shimada J (2011) Evolution model of δ34S and δ18O in dissolved sulfate in volcanic fan aquifers from recharge to coastal zone and through the Jakarta urban area, Indonesia. Sci Total Environ 409:2541–2554

    Article  CAS  Google Scholar 

  • Krouse HR (1980) Sulphur isotopes in our environment. In: Fritz P, Fontes JC (eds) Isotope geochemistry, vol 1., The terrestrial environmentElsevier, Amsterdam, pp 435–471

    Google Scholar 

  • Kunkler JF (1969) The sources of carbon dioxide in the zone of aeration of the Bandelier Tuff, near Los Alamos, New Mexico, U.S. Geol. Surv. Prof Pap. 650-B, B 185–B 188

  • Liesch T, Hinrichsen A, Goldscheider N (2015) Uranium in groundwater—fertilizers versus geogenic sources. Sci Total Environ 536:981–995

    Article  CAS  Google Scholar 

  • Ma R, Wang Y, Sun Z, Zheng C, Ma T, Prommer H (2011) Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, Northern China. Appl Geochem 26(5):884–897

    Article  CAS  Google Scholar 

  • Margat J (2008) Les eaux souterraines dans le monde. Orléans/France, BGRM/UNESCO 187 p

    Google Scholar 

  • Martin-Rojas I, Somma R, Delgado F, Estevez A, Iannace A, Perrone V, Zamparelli V (2009) Triassic continental rifting of Pangaea: direct evidence from the Alpujarride carbonates, Betic Cordillera, SE Spain. J Geol Soc 166:447–458

    Article  Google Scholar 

  • Martín-Rosales W, Gisbert J, Pulido-Bosch A, Vallejos A, Fernández-Cortés A (2007) Estimating groundwater recharge induced by engineering systems in a semiarid area (southeastern Spain). Environ Geol 52:985–995

    Article  Google Scholar 

  • Martos-Rosillo S, Moral F (2015) Hydrochemical changes due to intensive use of groundwater in the carbonate aquifers of Sierra de Estepa (Seville, Southern Spain). J Hydrol 528:249–263

    Article  CAS  Google Scholar 

  • Miao A, Carroll KC, Brusseau ML (2013) Characterization and quantification of groundwater sulfate sources at a mining site in an arid climate: the monument valley site in Arizona, USA. J Hydrol 504:207–215

    Article  CAS  Google Scholar 

  • Mook WG (1976) The dissolution-exchange model for dating groundwater with 14C. Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology. IAEA, Vienna, pp 213–225

    Google Scholar 

  • Moral F, Cruz-Sanjulián JJ, Olías M (2008) Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain). J Hydrol 360:281–296

    Article  CAS  Google Scholar 

  • Morgantini N, Frondini F, Cardellini C (2009) Natural trace elements baselines and dissolved loads in groundwater from carbonate aquifers of central Italy. Phys Chem Earth 34:520–529

    Article  Google Scholar 

  • Ortí F, Pérez-López A, García-Veigas J, Rosell L, Cendón DI, Pérez-Valera F (2014) Sulfate isotope compositions (δ34S, δ18O) and strontium isotopic ratios (87Sr/86Sr) of Triassic evaporates in the Betic cordillera (SE Spain). Rev Soc Geol Esp 27(1):79–90

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3–A computer program for speciation, batch- reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43

  • Plummer LN (2005) Dating of young groundwater. Isotopes in the water cycle. Springer, Dordrecht, pp 193–218

    Chapter  Google Scholar 

  • Reynauld A, Guglielmi J, Mudry J, Mangan C (1999) Hydrochemical approach to the alteration of the recharge of a karst aquifer consecutive to a long pumping period: example taken from Pinchinade Graben (Mouans-Sartoux, French Riviera). Groundwater 37:414–417

    Article  Google Scholar 

  • Rightmire CT (1967) A radiocarbon study of the age and origin of caliche deposits. M.A. thesis, University of Texas, Department of Geology Science, Austin

  • Rodríguez-Fernández J, Martín-Penela AJ (1993) Neogene evolution of the Campo de Dalias and surrounding off-shore areas (Northeastern Alboran Sea). Geodin Acta 6:255–270

    Article  Google Scholar 

  • Sánchez D, Barberá JA, Mudarra M, Andreo B (2015) Hydrogeochemical tools applied to the study of carbonate aquifers: examples from some karst systems of Southern Spain. Environ Earth Sci 74:199–215

    Article  Google Scholar 

  • Sanz de Galdeano C, Rodriguez-Fernández J, López-Garrido AC (1985) A strike-slip fault corridor within the Alpujarra mountains (Betic Cordilleras, Spain). Geol Rundsch 74:641–655

    Article  Google Scholar 

  • Saunders JA, Toran LE (1994) Evidence for dedolomitization and mixing in paleozoic carbonates near Oak Ridge, Tennessee. Gr Water 32(2):207–214

    Article  CAS  Google Scholar 

  • Sdao F, Parisi S, Kalisperi D, Pascale S, Soupios P, Lydakis-Simantiris N, Kouli M (2012) Geochemistry and quality of the groundwater from the karstic and coastal aquifer of geropotamos river basin at north-central Crete, Greece. Environ Earth Sci 67:1145–1153

    Article  CAS  Google Scholar 

  • Sivan O, Yechieli Y, Herut B, Lazar B (2005) Geochemical evolution and timescale of seawater intrusion into the coastal aquifer of Israel. Geochim Cosmochim Acta 69:579–592

    Article  CAS  Google Scholar 

  • Stamatakis MG, Tziritis EP, Evelpidou N (2009) The geochemistry of Boron-rich groundwater of the Karlovassi Basin, Samos Island, Greece. Cent Eur J Geosci 1(2):207–218

    Google Scholar 

  • Terzić J, Marković T, Pekaš Ž (2008) Influence of sea-water intrusion and agricultural production on the Blato Aquifer, Island of Korčula, Croatia. Environ Geol 54:719–729

    Article  Google Scholar 

  • Underwood EC, Ferguson GA, Betcher R, Phipps G (2009) Elevated Ba concentrations in a sandstone aquifer. J Hydrol 376:126–131

    Article  CAS  Google Scholar 

  • Valentino GM, Stanzione D (2003) Source processes of the thermal waters from the Phlegraean Fields (Naples, Italy) by means of the study of selected minor and trace elements distribution. Chem Geol 195:245–274

    Article  Google Scholar 

  • Vallejos A, Andreu JM, Sola F, Pulido-Bosch A (2015a) The anthropogenic impact on Mediterranean karst aquifers: cases of some Spanish aquifers. Environ Earth Sci 74:185–198

    Article  Google Scholar 

  • Vallejos A, Díaz-Puga MA, Sola F, Daniele L, Pulido-Bosch A (2015b) Using ion and isotope characterization to delimitate a hydrogeological macrosystem. Sierra de Gador (SE, Spain). J Geochem Explor 155:14–25

    Article  CAS  Google Scholar 

  • Van Stempvoort DR, Krouse HR (1994) Controls of δ18O in sulfate—Review of experimental data and application to specific environments, In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation: American Chemical Society Symposium Series 550, 446–480

  • Vengosh A, Spivack AJ, Artzi Y, Ayalon A (1999) Geochemical and boron, strontium, and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean coast of Israel. Water Resour Res 35:1877–1894

    Article  CAS  Google Scholar 

  • Wu P, Tang C, Zhu L, Liu C, Cha X, Tao X (2009) Hydrogeochemical characteristics of surface water and groundwater in the karst basin, southwest China. Hydrol Process 23(14):2012–2022

    Article  CAS  Google Scholar 

  • Xanke J, Goeppert N, Sawarieh A, Liesch T, Kinger J, Ali W, Hötzl H, Hadidi K, Goldscheider N (2015) Impact of managed aquifer recharge on the chemical and isotopic composition of a karst aquifer, Wala reservoir, Jordan. Hydrogeol J 23:1027–1040

    Article  CAS  Google Scholar 

  • Yechieli Y, Sivan O, Lazar B, Vengosh A, Ronen D, Herut B (2001) Radiocarbon in seawater intruding into the Israeli Mediterranean coastal aquifer. Radiocarbon 43:773–781

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work takes part of the general research lines promoted by the CEI-MAR Campus of International Excellence as a joint initiative between the universities of Almeria, Granada, Huelva and Málaga, headed by the University of Cádiz. This work was supported by the Andalusia Regional Government, Spain, through the Excellence Research Project P06-RNM-01696 and by MINECO-FEDER, through Project CGL2015-67273-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vallejos.

Additional information

Editorial responsibility: J. Trögl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Puga, M.A., Vallejos, A., Sola, F. et al. Groundwater flow and residence time in a karst aquifer using ion and isotope characterization. Int. J. Environ. Sci. Technol. 13, 2579–2596 (2016). https://doi.org/10.1007/s13762-016-1094-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1094-0

Keywords

Navigation