Skip to main content
Log in

Levels, bioaccumulation and biomagnification of pesticide residues in a tropical freshwater food web

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The study assessed pesticide contamination transfer in Ikpoba River, an important tropical freshwater ecosystem in Southern Nigeria. The study quantified concentrations, bioaccumulation and biomagnification of pesticides in Ikpoba River’s food web, with emphasis on less frequently assessed lower trophic-level organisms. Concentrations of pesticides were quantified in water, sediment and biota (phytoplankton, green algae (Cladophora), macrophyte (Commelina erecta), macrobenthic invertebrates (Lestes species, Caridina africana, Enallagma species, Gerris lacustris, Culex species, Pentaneura species, Sympetrum species, Argyroneta aquatica, Lecane species (Cladocera) and pelagic fish (Tilapia zilli)). Samples were collected at two separate stations and were analyzed using gas chromatography equipped with electron capture detector. Aldrin was the dominant pesticide in the Ikpoba River food web with concentrations accounting for 14.4% of the total pesticide residues in the assessed matrices. Sediment samples had significantly higher pesticide concentrations among the matrices assessed, with a total mean concentration of 0.095 ± 0.02 µg/kg dw. Among the biota samples, total pesticide levels were significantly higher (p < 0.05) in Commelina erecta. BAF and BSAF values were also highest in this species indicating that Commelina erecta may represent a greater reservoir for pesticides and may be a principal factor in subsequent transfer of pesticides along the food web of Ikpoba River. The BMF values for α-HCH, γ-HCH, β-HCH, glyphosate, heptachlor, aldrin, heptachlor epoxide, endosulfan I, endrin, carbofuran and diazinon showed that these pesticides have the potential to biomagnify along the trophic levels. The persistence of these pesticides in Ikpoba River supports the need for continuous monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Plate 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

All data concerning the research have been made available.

Code availability

Not applicable.

References

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  Google Scholar 

  • Alava JJ, Gobas FAPC (2012) Assessing biomagnification and trophic transport of persistent organic pollutants in the food chain of the Galapagos sea lion (Zalophus wollebaeki): conservation and management implications. In: Romero A, Keith EO (eds) New approaches to the study of marine mammals. InTech, Rijeka, pp 247–283. https://doi.org/10.5772/51725

    Chapter  Google Scholar 

  • Almatari MS, Ahmed YM, Reda L, Loutfy N, Ahmed TM (2017) Residues of some organic pollutants, their bioaccumulation, and risk assessments profile in Lake Temsah, Ismailia, Egypt. J Clin Exp Tox 1(1):7–20

    Google Scholar 

  • Arnot JA, Gobas FAPC (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14:257–297. https://doi.org/10.1139/A06-005

    Article  CAS  Google Scholar 

  • Beckvar N Lotufo GR (2011) DDT and other organohalogen pesticides in aquatic organisms. U.S. Environmental Protection Agency Papers. 248. http://digitalcommons.unl.edu/usepapapers

  • Behfar A, Nazari Z, Rabiee MH, Raeesi G, Oveisi MR, Sadeghi N, Janrat B (2013) The organochlorine pesticide residue levels in Karun River water. Jundishapur J Nat Pharm Prod 8:41–46. https://doi.org/10.1016/0960-8524(94)00139-R

    Article  Google Scholar 

  • Benka-Coker MO, Ojior OO (1995) Effect of slaughterhouse wastes on the quality of Ikpoba River. Bioresour Technol 52:5–12. https://doi.org/10.1016/0960-8524(94)00139-R

    Article  CAS  Google Scholar 

  • Borga K, Gabrielsen GW, Skssre JU (2001) Biomagnification of organochlorines along a Barents Sea food chain. Environ Pollut 113:187–198. https://doi.org/10.1016/S0269-7491(00)00171-8

    Article  CAS  Google Scholar 

  • Burton GA (2010) Metal bioavailability and toxicity in sediments. Crit Rev Environ Sci Technol 40:852–907. https://doi.org/10.1080/10643380802501567

    Article  CAS  Google Scholar 

  • Burkhard L (2006) Factors influencing the design of bioaccumulation factor and Biota–sediment accumulation factor field studies. Environ Toxicol Chem 22(2):351–360

    Google Scholar 

  • Das B, Khan YS, Das P, Shaheen SM (2002) Organochlorine pesticide residues in catfish, Tachysurus thalassinus (Ruppell, 1835) from the South Patches of the Bay of Bengal. Environ Pollut 120:255–259. https://doi.org/10.1016/s0269-7491(02)00153-7

    Article  CAS  Google Scholar 

  • DeLorenzo ME, Taylor LA, Lund SA, Pennington PL, Strozier ED, Fulton MH (2002) Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. Arch Environ Contam Toxicol 42(2):173–181. https://doi.org/10.1007/s00244-001-0008-3

    Article  CAS  Google Scholar 

  • Ezemonye LIN, Ogbeide O, Tongo I, Enuneku A, Ogbomida E (2015) Pesticide contaminats in Clarias gariepinus and Tilapia zilli from three rivers in Edo State, Nigeria; implications for human exposure. Int J Food Contam 2:3. https://doi.org/10.1186/s40550-015-0009-z

    Article  Google Scholar 

  • Ezemonye LIN, Ikpesu TO, Tongo I (2008) Distribution of diazinon in water, sediment and fish from Warri River, Niger Delta, Nigeria, Jordan. J Biol Sci 1:77–83

    Google Scholar 

  • Ezemonye LIN, Ikpesu TO, Tongo I (2009) Distribution of propoxur in water, sediment and fish from Warri River, Nigeria Delta, Nigeria. Turk J Biochem 34:121–127

    Google Scholar 

  • Ferrer I, García-Reyes JF, Mezcua M, Thurman EM, Fernández-Alba AR (2005) Multi-residue pesticide analysis in fruits and vegetables by liquid chromatography-time of-flight mass spectrometry. J Chromatogr A 1082:81–90. https://doi.org/10.1016/j.trac.2005.04.004

    Article  CAS  Google Scholar 

  • Fosu-Mensah YB, Okoff ED, Darko G, Gordon C (2016) Assessment of organochlorine pesticide residues in soils and drinking water sources from cocoa farms in Ghana. SpringerPlus 5:869. https://doi.org/10.5539/ep.v5n1p60

    Article  Google Scholar 

  • Franklin J (2016) How reliable are field-derived biomagnification factors and trophic magnification factors as indicators of bioaccumulation potential? Conclusions from a case study on per- and polyfluoroalkyl substances. Integr Environ Assess 12:6–20. https://doi.org/10.1002/ieam.1642

    Article  CAS  Google Scholar 

  • Giri N, Blum WE, Sieghardt M, Lesueur C, Mentler A (2012) A preliminary study of the content and distribution of pesticide residues in soil samples from the Kathmandu valley, Nepal. Spain J Soil Sci 2:20–31. https://doi.org/10.3232/SJSS.2012.V2.N3.03

    Article  Google Scholar 

  • Gobas FAPC, de Wolf W, Burkhard LP, Verbruggen E, Plotzke K (2009) Revisiting bioaccumulation criteria for POPs and PBT assessments. Integr Environ Assess Manag 5:624–637. https://doi.org/10.1897/IEAM_2008-089.1

    Article  CAS  Google Scholar 

  • Gorni R, Weber RR (2004) Organochlorine pesticides residues and PCBs in Benthic organisms of the inner shelf of the São Sebastião Channel, São Paulo, Brazil. Braz J Oceanogr 52(2):141–152. https://doi.org/10.1590/S1679-87592004000200006

    Article  Google Scholar 

  • Hamilton DJ, Ambrus Á, Dieterle RM, Felsot AS, Harris CA, Holland PT, Katayama A, Kurihara N, Linders J, Unsworth J, Wong SS (2003) Regulatory limits for pesticide residues in water (IUPAC Technical Report). Pure Appl Chem. https://doi.org/10.1351/pac200375081123

    Article  Google Scholar 

  • Hu GC, Dai JY, Xu ZC, Luo XJ, Cao H, Wang JS, Mai BX, Xu MQ (2010) Bioaccumulation behavior of polybrominated diphenyl ethers (PBDEs) in the freshwater food chain of Baiyangdian Lake, north China. Environ Int 36:309–315. https://doi.org/10.1016/j.envint.2010.01.002

    Article  CAS  Google Scholar 

  • Idowu EO, Ugwumba AAA (2005) Physical, chemical and benthic faunal characteristics of a southern Nigerian reservoir. Zoologist 3:15–25

    Google Scholar 

  • Khan MY, Shabeer M, Imtiyaz AR, Nazir AW (2012) PhysicoChemical analysis of River Jhelum (Kashmir). Glob J Sci Front Res Interdiscip 12:1–4

    Article  Google Scholar 

  • Khaparde M, Ahmad A (2013) Concentration of residues in different water bodies of Dhamtari district (C.G.), India. Plant Arch 13:803–805

    Google Scholar 

  • Knauert S, Escher B, Singer H, Hollender J, Knauer K (2008) Mixture toxicity of three photosystem II inhibitors (atrazine, isoproturon, and diuron) toward photosynthesis of freshwater phytoplankton studied in outdoor mesocosms. Environ Sci Technol 42:6424–6430. https://doi.org/10.1021/es072037q

    Article  CAS  Google Scholar 

  • Koranteng SS, Darko DA, Nukpezah D, Ameka GK (2018) Pesticides bioconcentration potential of aquatic plants in the Volta Lake. West Afr J Appl Ecol 26(4):193–202

    Google Scholar 

  • Kumar R, Nesemann H, Sharma G, Tseng LC, Prabhakar AK, Roy SP (2013) Community structure of macrobenthic invertebrates in the River Ganga in Bihar, India. Aquat Ecosyst Health Manag 16(4):385–394. https://doi.org/10.1080/14634988.2013.846200

    Article  Google Scholar 

  • Kwok CK, Liang Y, Leung SY, Wang H, Dong YH, Young L, Giesy JP, Wong MH (2013) Biota–sediment accumulation factor (BSAF), bioaccumulation factor (BAF), and contaminant levels in prey fish to indicate the extent of PAHs and OCPs contamination in eggs of water birds. Environ Sci Pollut Res 20:8425–8434. https://doi.org/10.1007/s11356-013-1809-4

    Article  CAS  Google Scholar 

  • Li N, Wania F, Lei YD, Daly GL (2003) A comprehensive and critical compilation, evaluation and selection of physical–chemical property data for selected polychlorinated biphenyls. J Phys Chem. https://doi.org/10.1063/1.1562632

    Article  Google Scholar 

  • Moermond CT, Janssen MP, de Knecht JA, Montforts MH, Peijnenburg WJ, Zweers PG, Sijm DT (2012) PBT assessment using the revised Annex XIII of REACH: a comparison with other regulatory frameworks. Integr Environ Assess Manag 8:359–371. https://doi.org/10.1002/ieam.1248

    Article  CAS  Google Scholar 

  • Mohr S, Berghahn R, Feibicke M, Meinecke S, Ottenstroer T, Schmiedling I, Schmiediche R, Schmidt R (2007) Effects of the herbicide metazachlor on macrophytes and ecosystem function in freshwater pond and stream mesocosms. Aquat Toxicol 82:73–84. https://doi.org/10.1016/j.aquatox.2007.02.001

    Article  CAS  Google Scholar 

  • Montuori P, Aurino S, Garzonio F, Triassi M (2016) Polychlorinated biphenyls and organochlorine pesticides in Tiber River and Estuary: occurrence, distribution and ecological risk. Sci Total Environ 571:1001–1016. https://doi.org/10.1016/j.scitotenv.2016.07.089

    Article  CAS  Google Scholar 

  • Nakata H, Sakai Y, Miyawaki T, Takemura A (2003) Bioaccumulation and toxic potencies of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in tidal flat and coastal ecosystems of the Ariake Sea. Jpn Environ Sci Technol 37(16):3513–3521. https://doi.org/10.1021/es021083h

    Article  CAS  Google Scholar 

  • Newell GE, Newell RC (1977) Marine plankton (a practical guide). Hutchinson, London

    Google Scholar 

  • Nfon E, Cousins IT, Broman D (2008) Biomagnification of organic pollutants in benthic and pelagic marine food chains from the Baltic Sea. Sci Total Environ 397:190–204. https://doi.org/10.1016/j.scitotenv.2008.02.029

    Article  CAS  Google Scholar 

  • Ntow WJ (2005) Pesticide residues in Volta Lake, Ghana. Lakes and Reserv 10:243–248. https://doi.org/10.1111/j.1440-1770.2005.00278.x

    Article  CAS  Google Scholar 

  • Ntow JW (2007) The use and fate of pesticides in vegetable-based agro ecosystems in Ghana. PhD dissertation submitted to Wageningen University and UNESCOIHE Institute for Water Education, p 120

  • Ogbeide O, Tongo I, Ezemonye LIN (2016) Human Health Risk Associated with Dietary and Non-Dietary Intake of Organochlorine Pesticide Residues from Rice Fields in Edo State Nigeria. Exposure Health 8(1):5–66

  • Ogbeide O, Uhunamure G, Okundaye F, Ejeomo C (2019) First report on probabilistic risk assessment of pesticide residues in a riverine ecosystem in South-South Nigeria. Chemosphere 231:546–561. https://doi.org/10.1016/j.chemosphere.2019.05.105

    Article  CAS  Google Scholar 

  • Okoya AA, Ogunfowokan AO, Asubiojo OI, Torto N (2013) Organochlorine pesticide residues in sediments and waters from cocoa producing areas of Ondo State, Southwestern Nigeria. ISRN Soil Sci 2013:1–12. https://doi.org/10.1155/2013/131647

    Article  CAS  Google Scholar 

  • Olatunbosun SS, Sojinu O, Sonibare E, Eddy O, Zeng Y (2011) Occurrence of organochlorine pesticides (OCPs) in surface sediments of the Niger Delta, Nigeria. J Appl Sci Res 7:1299–1305

    Google Scholar 

  • Osibanjo O, Adeyeye A (1997) Organochlorine pesticide residues in foodstuffs of animal origin in Nigeria. Bull Environ Contam Toxicol 58:206–221. https://doi.org/10.1007/s001289900321

    Article  CAS  Google Scholar 

  • Randall RC, Lee H, Ozretich RJ, Lake JL, Pruell RJ (1991) Evaluation of selected lipid methods for normalizing pollutant bioaccumulation. Environ Toxicol Chem 10:1431–1436

    Article  CAS  Google Scholar 

  • Ren J, Wang X, Wang C, Yao T (2016) Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: processes and mechanisms. Environ Pollut 220:636–643. https://doi.org/10.1016/j.envpol.2016.10.019

    Article  CAS  Google Scholar 

  • Schäfer RB, Den V, Brink PJ, Liess M (2011a) Occurrence of 331 organic pollutants in four rivers of North Germany between 1994 and 2004 and risk assessment for algae, invertebrates and fish. Environ Sci Technol 45:6167–6174. https://doi.org/10.1021/es2013006

    Article  CAS  Google Scholar 

  • Schäfer RB, Ohe PCVD, Kühne R, Schüürmann G, Liess M (2011b) Impacts of pesticides on freshwater ecosystems. In: Sánchez-Bayo F, van den Brink PJ, Mann RM (eds) Ecological impacts of toxic chemicals. Bentham Science Publishers, Sharjah, pp 111–137

    Chapter  Google Scholar 

  • Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual 33:419–448. https://doi.org/10.2134/jeq2004.4190

    Article  CAS  Google Scholar 

  • Schumann S (2005) Environmental risk assessment of pesticides in Nepal and Hindukush-Himalayan Region. Earth Environ Sci 38:83–98. https://doi.org/10.1007/1-4020-2243-3_5

    Article  Google Scholar 

  • Steinwandter H (1992) Development of microextraction methods in residue analysis. In: Cairns T, Sherma J (eds) Emerging strategies for pesticide analysis. CRC, Boca Raton, pp 3–50

    Google Scholar 

  • Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. Freshw Sci 29:344–358. https://doi.org/10.1899/08-171.1

    Article  Google Scholar 

  • Su GCC (1998) A comparison of statistical and empirical detection limits. J AOAC Int 81:105–110

    Article  CAS  Google Scholar 

  • Takeuchi I, Miyoshi N, Mizukawa K, Takada H, Ikemoto T, Omori K, Tsuchiya K (2009) Biomagnification profiles of polycyclic aromatic hydrocarbons, alkylphenols and polychlorinated biphenyls in Tokyo Bay elucidated by δ13C and δ15N isotope ratios as guides to trophic web structure. Mar Pollut Bull 58:663–671. https://doi.org/10.1016/j.marpolbul.2008.12.022

    Article  CAS  Google Scholar 

  • Tomza-Marciniak A, Witczak A (2009) Bioaccumulation of DDT and its metabolites in the Międzyodrze Ecosystem, Poland. Polish J Environ Stud 18:467–474

    CAS  Google Scholar 

  • Tongo I, Ezemonye LIN, Nupe P, Ogbomida E (2014) Levels, distribution and human health risk assessment of organochlorine pesticide residues in surface water from Ikpoba River, Nigeria. Niger J Sci Res 13:26–34

    Google Scholar 

  • Tongo I, Ewere E, Ezemonye L (2019) Organchlorine pesticide residues in fish (Alestes baremoze and Synodontis bastiani) from Warri River, Nigeria: Levels and human exposure assessment. Sokoto J Vet Sci 17:1–10. https://doi.org/10.4314/sokjvs.v17i2.1

    Article  Google Scholar 

  • Torres-Sánchez L, Schnaas L, Cebrián ME, del Carmen HM, Valencia EO, Hernández RMG, López-Carrillo L (2009) Prenatal dichlorodiphenyldichloroethylene (DDE) exposure and neurodevelopment: a follow-up from 12 to 30 months of age. Neurotoxicology 30:1162–1165. https://doi.org/10.1289/ehp.1205034

    Article  CAS  Google Scholar 

  • Tsuda T (2011) Bioconcentration of pesticides in fish from rivers and lakes, pesticides - formulations, effects, fate. IntechOpen, London. https://doi.org/10.5772/13606

    Book  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2010) Guidance for implementing the January 2001 methylmercury water quality criterion, Washington, p 209

  • United States Environmental Protection Agency (USEPA) (2006) Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Vol. 2, Risk Assessment and Fish Consumption Limits. http://www.epa.gov/ost/fishadvice/volum2/index.httml

  • United States Environmental Protection Agency (USEPA) (2004) Guidelines for water reuse. EPA/625/R-04/108.US EPA. CampDresser & McKee Inc., Washington

  • United States Environmental Protection Agency (USEPA) Method 1699 (2007) Pesticides in water, soil, sediment, biosolids, and tissue by high resolution gas chromatography with high resolution mass spectrometry.821-R-08-001

  • Wan Y, Hu J, Zhang K, An L (2008) Trophodynamics of polybrominated diphenyl ethers in the marine food web of Bohai Bay, North China. Environ Sci Technol 42:1078–1083. https://doi.org/10.1021/es0720560

    Article  CAS  Google Scholar 

  • Widenfalk A, Svensson JM, Goedkoop W (2004) Effects of the pesticides captan, deltamethrin, isoproturon, and pirimicarb on the microbial community of a freshwater sediment. Environ Toxicol Chem 23:1920–1927. https://doi.org/10.1897/03-345

    Article  CAS  Google Scholar 

  • Williams BA (2013) Levels and distribution of chlorinated pesticide residues in water and sediments of Tarkwa Bay, Lagos Lagoon. J Res Environ Sci Toxicol 2:1–8

    Google Scholar 

  • Zhang G, Pan Z, Wang X, Mo X, Li X (2015) Distribution and accumulation of polycyclic aromatic hydrocarbons (PAHs) in the food web of Nansi Lake, China. Environ Monit Assess 187:173. https://doi.org/10.1007/s10661-015-4362-4

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from any funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

IT: was involved in conceptualization, methodology, supervision, visualization and writing. AO: was involved in data curation and writing. FE: was involved in data curation and writing. PTB: was involved in data curation and writing. AAE: was involved in supervision. NE: was involved in supervision. OA: was involved in supervision. EO: was involved in supervision. OO: was involved in supervision. LINE: was involved in visualization, investigation and supervision.

Corresponding author

Correspondence to I. Tongo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Consent to participate

All authors gave consent to participate in the research.

Consent for publication

All authors gave consent for the research to be published.

Ethics approval

Ethical clearance was obtained from the University of Benin Ethical Committee on handling of biota samples.

Additional information

Editorial responsibility: S. Mirkia.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tongo, I., Onokpasa, A., Emerure, F. et al. Levels, bioaccumulation and biomagnification of pesticide residues in a tropical freshwater food web. Int. J. Environ. Sci. Technol. 19, 1467–1482 (2022). https://doi.org/10.1007/s13762-021-03212-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03212-6

Keywords

Navigation