Skip to main content
Log in

Finite Element-based Free Vibration Analysis of Power-Law, Exponential and Sigmoidal Functionally Graded Sandwich Beams

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

In the present work, a comparative study has been carried out between sandwich functionally graded beams made up of power law and exponential and sigmoidal laws under free vibration conditions. The study has been carried out using the recently proposed higher-order zigzag theory. The present formulation satisfies all important necessary conditions such as interlaminar transverse stress continuity condition at the interface. The present formulation incorporates transverse normal stress and hence is more efficient. Also, the present formulation satisfies zero transverse shear stress conditions at the top and bottom surface of the beam. Three-noded C-0 finite element having eight degrees of freedom per node is used during the study. The present formulation is free from any post-processing requirements. The efficiency of the present model has been carried out by comparing the present results for the power-law sandwich FGM beam with those available in the literature. Variation of stresses across the thickness for the first six modes in graphical form is also reported. Several new results have also been presented in the manuscript, especially for exponential and sigmoidal sandwich FGM beams, which will serve as the benchmark for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. A. Garg, H.D. Chalak, A review on analysis of laminated composite and sandwich structures under hygrothermal conditions. Thin-Walled Struct. 142, 205–226 (2019). https://doi.org/10.1016/j.tws.2019.05.005

    Article  Google Scholar 

  2. P.R. Kumar, K.M. Rao, N.M. Rao, Effect of taper on free vibration of functionally graded rotating beam by Mori-Tanaka method. J. Inst. Eng. Ser. C. 100, 729–736 (2019). https://doi.org/10.1007/s40032-018-0477-z

    Article  Google Scholar 

  3. R. Sharma, V.K. Jadon, B. Singh, A review on the finite element methods for heat conduction in functionally graded materials. J. Inst. Eng. Ser. C. 96, 73–81 (2015). https://doi.org/10.1007/s40032-014-0125-1

    Article  Google Scholar 

  4. M. Patni, S. Minera, R.M.J. Groh, A. Pirrera, P.M. Weaver, Three-dimensional stress analysis for laminated composite and sandwich structures. Compos. Part B Eng. 155, 299–328 (2018). https://doi.org/10.1016/j.compositesb.2018.08.127

    Article  Google Scholar 

  5. A. Garg, H. Chalak, Analysis of non-skew and skew laminated composite and sandwich plates under hygro-thermo-mechanical conditions including transverse stress variations. J. Sandw. Struct. Mater. (2020). https://doi.org/10.1177/1099636220932782

    Article  Google Scholar 

  6. A.S. Sayyad, Y.M. Ghugal, Modeling and analysis of functionally graded sandwich beams: a review. Mech. Adv. Mater. Struct. 26, 1776–1795 (2019). https://doi.org/10.1080/15376494.2018.1447178

    Article  Google Scholar 

  7. M. Belarbi, A.M. Zenkour, A. Tati, S.J. Salami, A. Khechai, M. Houari, An efficient eight-node quadrilateral element for free vibration analysis of multilayer sandwich plates. Int. J. Numer. Methods Eng. 22, 2360–2387 (2021). https://doi.org/10.1002/nme.6624

    Article  MathSciNet  Google Scholar 

  8. M.O. Belarbi, A. Tati, H. Ounis, A. Benchabane, Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates. Struct. Eng. Mech. 57, 473–506 (2016). https://doi.org/10.12989/sem.2016.57.3.473

    Article  Google Scholar 

  9. A. Garg, H.D. Chalak, M.-O. Belarbi, A.M. Zenkour, R. Sahoo, Estimation of carbon nanotubes and their applications as reinforcing composite materials–an engineering review. Compos. Struct. (2021). https://doi.org/10.1016/j.compstruct.2021.114234

    Article  Google Scholar 

  10. H.-T. Thai, T.-K. Nguyen, T.P. Vo, J. Lee, Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. Eur. J. Mech. A/Solids. 45, 211–225 (2014). https://doi.org/10.1016/j.euromechsol.2013.12.008

    Article  MathSciNet  MATH  Google Scholar 

  11. P.F. Pai, A new look at shear correction factors and warping functions of anisotropic laminates. Int. J. Solids Struct. 32, 2295–2313 (1995). https://doi.org/10.1016/0020-7683(94)00258-X

    Article  MATH  Google Scholar 

  12. M.O. Belarbi, M.S.A. Houari, A.A. Daikh, A. Garg, T. Merzouki, H.D. Chalak, H. Hirane, Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory. Compos. Struct. 264, 113712 (2021). https://doi.org/10.1016/j.compstruct.2021.113712

    Article  Google Scholar 

  13. X. Wang, S. Li, Free vibration analysis of functionally graded material beams based on Levinson beam theory. Appl. Math. Mech. 37, 861–878 (2016). https://doi.org/10.1007/s10483-016-2094-9

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Belarbi, A. Khechai, A. Bessaim, M. Houari, A. Garg, H. Hirane, H. Chalak, Finite element bending analysis of symmetric and non-symmetric functionally graded sandwich beams using a novel parabolic shear deformation theory. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. (2021). https://doi.org/10.1177/14644207211005096

    Article  Google Scholar 

  15. L.C. Trinh, T.P. Vo, A.I. Osofero, J. Lee, Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach. Compos. Struct. 156, 263–275 (2016). https://doi.org/10.1016/j.compstruct.2015.11.010

    Article  Google Scholar 

  16. M. Liu, Y. Cheng, J. Liu, High-order free vibration analysis of sandwich plates with both functionally graded face sheets and functionally graded flexible core. Compos. Part B Eng. 72, 97–107 (2015). https://doi.org/10.1016/j.compositesb.2014.11.037

    Article  Google Scholar 

  17. T.P. Vo, H. Thai, T. Nguyen, A. Maheri, J. Lee, Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Eng. Struct. 64, 12–22 (2014). https://doi.org/10.1016/j.engstruct.2014.01.029

    Article  Google Scholar 

  18. M.C. Amirani, S.M.R. Khalili, N. Nemati, Free vibration analysis of sandwich beam with FG core using the element free Galerkin method. Compos. Struct. 90, 373–379 (2009). https://doi.org/10.1016/j.compstruct.2009.03.023

    Article  Google Scholar 

  19. A.I. Osofero, T.P. Vo, T.K. Nguyen, J. Lee, Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3D theories. J. Sandw. Struct. Mater. 18, 3–29 (2016). https://doi.org/10.1177/1099636215582217

    Article  Google Scholar 

  20. J.S. Rad, A. Tivay, M. Sadighi, Free vibration analysis of FGM sandwich beams containing edge cracks. Adv. Mater. Res. 488–489, 230–235 (2012)

    Article  Google Scholar 

  21. A.S. Sayyad, P.V. Avhad, On static bending, elastic buckling and free vibration analysis of symmetric functionally graded sandwich beams. J. Solid Mech. 11, 166–180 (2019). https://doi.org/10.22034/JSM.2019.664227

    Article  Google Scholar 

  22. T.-K. Nguyen, B.-D. Nguyen, A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams. J. Sandw. Struct. Mater. 17, 613–631 (2015). https://doi.org/10.1177/1099636215589237

    Article  Google Scholar 

  23. T.-K. Nguyen, T.P. Vo, B.-D. Nguyen, J. Lee, An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory. Compos. Struct. 156, 238–252 (2016). https://doi.org/10.1016/j.compstruct.2015.11.074

    Article  Google Scholar 

  24. K. Koutoati, F. Mohri, E.M. Daya, Finite element approach of axial bending coupling on static and vibration behaviors of functionally graded material sandwich beams. Mech. Adv. Mater. Struct. (2019). https://doi.org/10.1080/15376494.2019.1685144

    Article  Google Scholar 

  25. A.A. Daikh, M.S.A. Houari, M.O. Belarbi, S. Chakraverty, M.A. Eltaher, Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01413-8

    Article  Google Scholar 

  26. M. Dorduncu, Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory. Thin-Walled Struct. 146, 106468 (2020). https://doi.org/10.1016/j.tws.2019.106468

    Article  Google Scholar 

  27. M. Di Sciuva, M. Sorrenti, Bending and free vibration analysis of functionally graded sandwich plates: an assessment of the refined zigzag theory. J. Sandw. Struct. Mater. (2019). https://doi.org/10.1177/1099636219843970

    Article  Google Scholar 

  28. S. Brischetto, Classical and mixed advanced models for sandwich plates embedding functionally graded cores. J. Mech. Mater. Struct. 4, 13–33 (2009). https://doi.org/10.2140/jomms.2009.4.13

    Article  Google Scholar 

  29. E. Carrera, S. Brischetto, M. Cinefra, M. Soave, Effects of thickness stretching in functionally graded plates and shells. Compos. Part B Eng. 42, 123–133 (2011). https://doi.org/10.1016/j.compositesb.2010.10.005

    Article  Google Scholar 

  30. A. Garg, H.D. Chalak, A. Chakrabarti, Bending analysis of functionally graded sandwich plates using HOZT including transverse displacement effects. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1814157

    Article  Google Scholar 

  31. S. Yildirim, Free vibration analysis of sandwich beams with functionally-graded-cores by complementary functions method. AIAA J. 58, 5431–5439 (2020). https://doi.org/10.2514/1.J059587

    Article  Google Scholar 

  32. A. Garg, H. Chalak, Novel higher-order zigzag theory for analysis of laminated sandwich beams. Proc. Inst. Mech. Eng. Part L J Mater. Des. Appl. 235, 176–194 (2021). https://doi.org/10.1177/1464420720957045

    Article  Google Scholar 

  33. A. Garg, H.D. Chalak, A. Chakrabarti, Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory. Mech. Mater. 151, 103634 (2020). https://doi.org/10.1016/j.mechmat.2020.103634

    Article  Google Scholar 

  34. A. Garg, H.D. Chalak, M. Belarbi, A.M. Zenkour, Hygro-thermo-mechanical based bending analysis of symmetric and unsymmetric power-law, exponential and sigmoidal FG sandwich beams. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1931993

    Article  Google Scholar 

  35. H.D. Chalak, A. Chakrabarti, M.A. Iqbal, A.H. Sheikh, Vibration of laminated sandwich beams having soft core. JVC/J. Vib. Control. 18, 1422–1435 (2012). https://doi.org/10.1177/1077546311421947

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to MHRD, Government of India and National Institute of Technology Kurukshetra, India for providing financial assistance for the present work through the scholarship grant (2K17/NITK/PHD/6170004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Chalak.

Ethics declarations

Conflict of interest

The authors declare there exists no conflict of interest regarding the present manuscript in any form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Table 7.

Table 7 Brief about homogenization scheme

Appendix 2

See Fig. 32.

Fig. 32
figure 32

Validation study for non-dimensional in-plane stress distribution for 1-1-1 s-s H-Type-A sandwich FGM beam with results obtained using model proposed by Chalak et al. [35] \(\left( {n = 1, l/h = 10} \right)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, A., Chalak, H.D., Belarbi, MO. et al. Finite Element-based Free Vibration Analysis of Power-Law, Exponential and Sigmoidal Functionally Graded Sandwich Beams. J. Inst. Eng. India Ser. C 102, 1167–1201 (2021). https://doi.org/10.1007/s40032-021-00740-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-021-00740-5

Keywords

Navigation