Skip to main content
Log in

Production and Recovery of Pyruvic Acid: Recent Advances

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

Pyruvic acid is an important keto-carboxylic acid and can be manufactured by both chemical synthesis and biotechnological routes. In the present paper an overview of recent developments and challenges in various existing technique for the production and recovery of pyruvic acid from fermentation broth or from waste streams has been presented. The main obstacle in biotechnological production of pyruvic acid is development of suitable microorganism which can provide high yield and selectivity. On the other hand, technical limitation in recovery of pyruvic acid from fermentation broth is that, it could not be separated as other carboxylic acid in the form of salts by addition of alkali. Besides, pyruvic acid cannot be crystallized. Commercial separation by distillation is very expensive because pyruvic acid decomposes at higher temperature. It is also chemically reactive due to its peculiar molecular structure and has tendency to polymerize. Thus, at high concentration the various type of reaction leads to lower yield of the product, and hence, conventional methods are not favorable. Alternate separation technologies viable to both synthetic and biological routes are the current research areas. Latest techniques such as reactive extraction is new to the field of recovery of pyruvic acid. Recent development and future prospects in downstream processing of biochemically produced pyruvic acids has been discussed in this review article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

K D :

Distribution coefficient

K E(1,1) :

Equilibrium complexation constant for (1:1) acid: amine complex, m3 kmol−1

[\(\overline{HA}\)]:

Concentration of pyruvic acid in organic phase, kmol m−3

[HA]:

Concentration of pyruvic acid in aqueous phase, kmol m−3

[B]:

Concentration of acid extracted by diluent, kmol m−3

[A ]:

Concentration of acid anion, kmol m−3

Z :

Loading ratio

E :

Degree of extraction,

\(\it {R}_{\it{HP}}\) :

Rate of extraction

\(\it {D}_{\it{HP}}\) :

Diffusivity coefficient

\([\overline{HA} ]\) 2 :

Concentration of acid dimmer in organic phase, m3 kmol−1

TOA :

Tri-n-octylamine

m :

Order with respect to acid

n :

Order with respect to amine

References

  1. Y. Li, J. Chen, S. Lun, Biotechnological production of pyruvic acid. Appl. Microb. Biotechnol. 57, 451 (2001)

    Article  Google Scholar 

  2. Y. Li, W. Fu, J. Chen, Recovery of pyruvate from fermentation broth by using ion exchange resin chromatography. Wuxi. Qinggong. Daxue. Xuebao. 20, 335 (2001)

    Google Scholar 

  3. J.W. Howard, W.A. Fraser, Preparation of pyruvic acid. Org. Synth. Coll. 1, 475 (1932)

    Google Scholar 

  4. R. Miyata, H. Tsutsui, T. Yonehara, Preparing pyruvic acid by fermentation with Torulopsis species. J.P. Patent. 0,155,185 (1989)

  5. T. Yonehara, R. Miyata, H. Matsuno, M. Goto, S. Yahanda, Development of fermentative production of pyruvate by metabolic control. Seibutsu Kogaku Kaishi 78, 56 (2000)

    Google Scholar 

  6. Y. Izumi, Y. Matsumura, Y. Tani, H. Yamada, Pyruvic acid production from 1,2-propanediol by thiamine. Agric. Biol. Chem. 46, 2673 (1982)

    Google Scholar 

  7. U. Behrens, S. Fiedler, Recovery of pyruvate. E.G. Patent. 135,213 (1979)

  8. B. Besnainou, D. Giani, C. Sahut, Process for the production of pyruvic acid by fermentation. E.P. Patent. 312,453 (1989)

  9. B. Besnainou, D. Giani, C. Sahut, Method for producing pyruvic acid by fermentation. U.S. Patent. 4,918,013 (1990)

  10. B.A. Burdick, J.R. Schaeffer, Co-immobilized coupled enzyme systems on nylon mesh capable of gluconic and pyruvic acid production. Biotechnol. Lett. 9, 253 (1987)

    Article  Google Scholar 

  11. B. Cooper, Microbial manufacture of pyruvic acid from d (−)lactic acid. D.E. Patent. 3,733,157 (1989)

  12. D.L. Anton, R. DiCosimo, V.G. Witterholt, Process for the preparation of pyruvic acid. W.O. Patent. 9,500,656 (1995)

  13. A. Eisenberg, J.E. Seip, J.E. Gavagan, M.S. Payne, D.L. Anton, R. DiCosimo, Pyruvic acid production using methylotrophic yeast transformants as catalyst. J. Mol. Catal. B Enzym. 2, 223 (1997)

    Article  Google Scholar 

  14. V. Goswami, A.K. Srivastava, Propionic acid production in an in situ cell retention bioreactor. Appl. Microbiol. Biotechnol. 56, 676 (2001)

    Article  Google Scholar 

  15. S.T. Hsu, S.T. Yang, Propionic acid fermentation of lactose by Propionibacterium acidipropionici: effects of pH. Biotechnol. Bioeng. 38, 571 (1991)

    Article  Google Scholar 

  16. V.P. Lewis, S.T. Yang, A novel extractive fermentation process for propionic acid production from whey lactose. Appl. Microbiol. Biotechnol. 37, 437 (1992)

    Article  Google Scholar 

  17. D. Jin, S. Liu, L. Xu, H. Ye, Study of a cleaner extraction of pyruvic acid from fermentation broth. Afr. J. Biotechnol. 10, 14083 (2011)

    Article  Google Scholar 

  18. Z. Lu, Immobilized cells technique and its application (The Peoples Press of Ningxia, Ningxia, 1990)

    Google Scholar 

  19. R.W. Helsel, Removing carboxylic acids from aqueous wastes. Chem. Eng. Prog. 73, 55 (1977)

    Google Scholar 

  20. A. Yokota, H. Shimizu, Y. Terasawa, N. Takaoka, F. Tomita, Pyruvic acid production by a lipoic acid auxotroph of Escherichia coli W1485. Appl. Microbiol. Biotechnol. 41, 638 (1994)

    Article  Google Scholar 

  21. J. Gu, Y. Wang, Q. Jiao, Biocatalyst preparation from Pseudononas putida SM-6 for conversion of di-lactate to pyruvate. Biochem. Eng. J. 22, 89 (2005)

    Article  Google Scholar 

  22. J. Ogawa, C.L. Soong, M. Ito, Enzymatic production of pyruvate from fumarate—an application of microbial cyclic-imide-transforming pathway. J. Mol. Catal. B Enzym. 11, 355 (2001)

    Article  Google Scholar 

  23. A.P. Biwer, P.T. Zuber, B. Zelic, T. Gerharz, K.J. Bellmann, E. Heinzle, Modeling and analysis of a new process for pyruvate production. Ind. Eng. Chem. Res. 44, 3124 (2005)

    Article  Google Scholar 

  24. R. Uchio, K. Kikuchi, Y. Hirose, Process for producing pyruvic acid by fermentation. U.S. Patent. 3, 993,543 (1976)

  25. N. Zhao, Y. Liu, H. Que, Y. Xu, Study on extraction technology of sodium pyruvate in fermentation production. Acta. Agr. Jiangxi 22, 161 (2010)

    Google Scholar 

  26. H. Matsuno, M. Goto, M. Sasakim, Purification of pyruvic acid by weakly-basic exchange resin. JP Patent. 06,306,011 (1994)

  27. H. Shaokai, Q. Wei, D. Youyuan, Sorption of pyruvic acid with weakly basic polymer sorbents. Chin. J. Chem. Eng. 15, 868 (2007)

    Article  Google Scholar 

  28. C.Q. Ma, J.C. Li, J.H. Qiu, M. Wang, P. Xu, Recovery of pyruvic acid from biotransformation solutions. Appl. Microbiol. Biotechnol. 70, 308 (2006)

    Article  Google Scholar 

  29. B. Zelic, D.V. Racki, Recovery of pyruvic acid from fermentation broth: process development and modelling. Desalination 174, 267 (2005)

    Article  Google Scholar 

  30. L.M. Vane, A review of pervaporation for product recovery from biomass fermentation processes. Biofuels Bioprod. Biorefin. 2, 553 (2008)

    Article  Google Scholar 

  31. J.A. Posada, C.A. Cardona, Propionic acid production from raw glycerol using commercial and engineered strains. Ind. Eng. Chem. Res. 51, 2354 (2012)

    Article  Google Scholar 

  32. N. Garcia, J.A. Caballero, Economic and environmental assessment of alternatives to the extraction of acetic acid from water. Ind. Eng. Chem. Res. 50, 10717 (2011)

    Article  Google Scholar 

  33. R. Datta, M. Henry, Recent advances in products, processes and technologies—a review. J. Chem. Technol. Biotechnol. 81, 1119 (2006)

    Article  Google Scholar 

  34. M.C. Duke, A. Lim, S.C. da Luz, L. Nielsen, Lactic acid enrichment with inorganic nanofiltration and molecular sieving membranes by pervaporation. Food Bioprod. Process. 86, 290 (2008)

    Article  Google Scholar 

  35. P. Pal, J. Sikder, S. Roy, L. Giorno, Process intensification in lactic acid production: a review of membrane based processes. Chem. Eng. Process. 48, 1549 (2009)

    Article  Google Scholar 

  36. J. Zhuge, Z. Wang, Technical manual of industrial microbiology experiment (China Light Industry Press, Beijing, 1994)

    Google Scholar 

  37. M.C.M. Cockrem, P.D. Johnson, Recovery of lactate and lactic acid from fermentation broth. US Patent. 5 (1991)

  38. T. Sirman, D.L. Pyle, A.S. Grandison, Extraction of organic acids using a supported liquid membrane. Biochem. Soc. Trans. 19, 274 (1991)

    Article  Google Scholar 

  39. M.C. Cuellar, S.N. Herreilers, A.J.J. Straathof, J.J. Heijnen, L.A.M. Van der Wielen, Limits of operation for the integration of water removal by membranes and crystallization of l-Phenylalanine. Ind. Eng. Chem. Res. 48, 1566 (2009)

    Article  Google Scholar 

  40. Y.H. Cho, H.D. Lee, H.B. Park, Integrated membrane processes for separation and purification of organic acid from a biomass fermentation process. Ind. Eng. Chem. Res. 51, 10207 (2012)

    Article  Google Scholar 

  41. J.H. Kim, J.G. Na, H.J. Shim, Y.K. Chang, Modeling of ammonium lactate recovery and impurity removal from simulated fermentation broth by nanofiltration. J. Membr. Sci. 396, 110 (2012)

    Article  Google Scholar 

  42. J.M.K. Timmer, J. Kromkamp, T. Robbertsen, Lactic acid separation from fermentation broth by reverse osmosis and nanofiltration. J. Membr. Sci. 92, 185 (1994)

    Article  Google Scholar 

  43. H. Reisinger, R. Marr, Multicomponent-liquid-membrane permeation of organic acids. Chem. Eng. Technol. 15, 363 (1992)

    Article  Google Scholar 

  44. C. Scholler, J.B. Chaudhari, D.L. Pyle, Emulsion liquid membrane extraction of lactic acid from aqueous solutions and fermentation broth. Biotechnol. Bioeng. 42, 50 (1993)

    Article  Google Scholar 

  45. V. Dissing, B. Mattiesson, Cultivation of Lactococcus lactis in a polyelectrolyte-neutral polymer aqueous two-phase system. Biotechnol. Lett. 16, 333 (1994)

    Article  Google Scholar 

  46. J. Planas, P. Radstrom, F. Tjerneld, B. Hahn-Hagerdal, Enhanced production of lactic acid through the use of a novel aqueous two-phase system as an extractive fermentation system. Appl. Microbiol. Biotechnol. 45, 737 (1996)

    Article  Google Scholar 

  47. J. Planas, A. Kozlowski, J.M. Harris, F. Tjerneld, B. Hahn-Hagerdal, Novel polymer-polymer conjugates for recovery of lactic acid by aqueous two-phase extraction. Biotechnol. Bioeng. 66, 211 (1999)

    Article  Google Scholar 

  48. R. Juang, R. Huang, R. Wu, Separation of citric and lactic acids in aqueous solutions by solvent extraction and liquid membrane processes. J. Membr. Sci. 136, 89 (1997)

    Article  Google Scholar 

  49. Y. Tong, M. Hirata, H. Takanashi, T. Hano, F. Kubota, M. Goto, F. Nakashio, M. Matsumoto, Extraction of lactic acid from fermented broth with microporous hollow fiber membranes. J. Membr. Sci. 143, 81 (1998)

    Article  Google Scholar 

  50. H. Huang, S. Yang, D.E. Ramey, A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution. Appl. Biochem. Biotechnol. 114, 671 (2004)

    Article  Google Scholar 

  51. B. Zelic, T. Gerharz, M. Bott, D. Vasić-Rački, C. Wandrey, R. Takors, Fed-batch process for pyruvate production by recombinant Escherichia coli TTC 202 strain. Eng. Life Sci. 3, 299 (2003)

    Article  Google Scholar 

  52. N. Kawabata, S. Yasuda, T. Yamazaki, Process for recovering a carboxylic acid, U.S. Patent. 4,323,702 (1982)

  53. A. Srivastava, A. Roychoudhury, V. Sahai, Extractive lactic acid fermentation using ion exchange resin. Biotechnol. Bioeng. 39, 607 (1992)

    Article  Google Scholar 

  54. Y. Dai, J. King, Selectivity between lactic acid and glucose during recovery of lactic acid with basic extractants and polymeric sorbents. Ind. Eng. Chem. Res. 35, 1215 (1996)

    Article  Google Scholar 

  55. C.C. Chen, L.K. Ju, Coupled lactic acid fermentation and adsorption. Appl. Microbiol. Biotechnol. 59, 170 (2002)

    Article  Google Scholar 

  56. S. Kulprathipanja, A.R. Oroshar, Separation of lactic acid from fermentation broth with an anion polymeric absorbent. U.S. Patent. 5, 068,418 (1991)

  57. W. Zihao, Z. Kenfeng, Kinetic and mass transfer for lactic acid recovered with anion exchange method in fermentation solution. Biotechnol. Bioeng. 47, 1 (1995)

    Article  Google Scholar 

  58. G. Raya-Tonetti, P. Cordoba, J. Bruno-Barcena, F. Sineriz, N. Perotti, Fluidized bed ion exchange for purification of lactic acid from fermentation. Biotechnol. Tech. 13, 201 (1999)

    Article  Google Scholar 

  59. K. Ye, S. Jin, K. Shimizu, Performance improvement of lactic acid fermentation by multistage extractive fermentation. J. Chem. Technol. Biotechnol. 66, 223 (1996)

    Article  Google Scholar 

  60. K.A. Berglund, P. Elankovan, D.A. Glassner, Carboxylic acid recovery and crystallization process. U.S. Patent. 5,034,105 (1991)

  61. R. Datta, D.A. Glassner, M.K. Jain, J.R. Vick Roy, Fermentation and recovery process for succinic acid. U.S. Patent. 5,168,055 (1992)

  62. S. Yedur, K.S. Berglung, D.D. Dunuwila, Succinic acid production and purification, US Patent. 6,265,190 (2001)

  63. K.L. Wasewar, A.A. Yawalkar, J.A. Moulijn, V.G. Pangarkar, Fermentation of glucose to lactic acid coupled with reactive extraction: a review. Ind. Eng. Chem. Res. 43, 5969 (2004)

    Article  Google Scholar 

  64. J.M. Wardell, C.J. King, Solvent equilibria for extraction of carboxylic acids from water. J. Chem. Eng. Data 23, 144 (1978)

    Article  Google Scholar 

  65. A.M. Baniel, Process for the extraction of organic acids from aqueous solution. E.P. Patent. 0,049,429 (1982)

  66. A.S. Kertes, C.J. King, Extraction chemistry of fermentation product carboxylic acids. Biotechnol. Bioeng. 28, 269 (1986)

    Article  Google Scholar 

  67. A. Senol, Influence of diluent on amine extraction of pyruvic acid using Alamine system. Chem. Eng. Process. 45, 755 (2006)

    Article  Google Scholar 

  68. M.E. Marti, T. Gurkan, L.K. Doraiswamy, Equilibrium and kinetic studies on reactive extraction of pyruvic acid with trioctylamine in 1-octanol. Ind. Eng. Chem. Res. 50, 13518 (2011)

    Article  Google Scholar 

  69. L.K. Doraiswamy, Organic Synthesis Engineering (Oxford University Press, New York, 2001)

    Google Scholar 

  70. S. Kumar, B.V. Babu, Propionic acid production via fermentation route using renewable sources. Chem. Ind. Dig. 9, 76 (2008)

    Google Scholar 

  71. D. Cascaval, A.I. Galaction, New separation technique on bioseparation 1. reactive extraction. Chem. Ind. 58, 375 (2004)

    Article  Google Scholar 

  72. E. Kahya, E. Bayraktar, U. Mehmetoglu, Optimization of process parameters for reactive lactic acid extraction. Turk. J. Chem. 25, 223 (2001)

    Google Scholar 

  73. J.A. Tamada, A.S. Kertes, C.J. King, Extraction of carboxylic acids with amine extractants. 1. equilibria and law of mass action modeling. Ind. Eng. Chem. Res. 29, 1319 (1990)

    Article  Google Scholar 

  74. W. Qin, Z. Li, Y. Dai, Extraction equilibria of glycolic and glyoxylic acids with trialkylphosphine oxide and trioctylamine as extractant. Ind. Eng. Chem. Res. 42, 6196 (2003)

    Article  Google Scholar 

  75. A. Senol, Optimum extraction equilibria of the systems (water + carboxylic acid + 1-hexanol/Alamine): thermodynamic modeling. J. Chem. Eng. Data 58, 528 (2013)

    Article  Google Scholar 

  76. D. Pal, A. Keshav, Extraction equilibria of pyruvic acid using tri-n-butyphosphate- influence of diluents. J. Chem. Eng. Data 59, 2709 (2014)

    Article  Google Scholar 

  77. L.K. Doraiswamy, M.M. Sharma, Heterogeneous Reaction: Analysis, Examples, and Reactor Design, Fluid–Fluid–Solid Reactions, 1st edn. (Wiley, New York, 1984)

    Google Scholar 

  78. C.R. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions. AIChE J. 1, 264 (1955)

    Article  Google Scholar 

  79. K.A. Reddy, L.K. Doraiswamy, Estimating liquid diffusivity. Ind. Eng. Chem. Fundam. 6, 77 (1967)

    Article  Google Scholar 

  80. D. Pal, A. Tripathi, A. Shukla, K.R. Gupta, A. Keshav, Reactive extraction of pyruvic acid using tri-n-octylamine diluted in decanol/kerosene: equilibrium and effect of temperature. J. Chem. Eng. Data 60, 860 (2015)

    Article  Google Scholar 

  81. D. Pal, A. Keshav, Separation of pyruvic acid using reactive extraction: back extraction and effect of pH. Int. J. ChemTech Res. 7, 1889 (2015)

    Google Scholar 

  82. D. Pal, A. Keshav, Recovery of pyruvic acid using tri-n-butylamine dissolved in non-toxic diluent (rice bran oil). J. Inst. Eng. India Ser. E 97, 81 (2016)

    Article  Google Scholar 

  83. D. Pal, N. Thakre, A. Kumar, A. Keshav, Reactive extraction of pyruvic acid using mixed extractants. Sep. Sci. Technol. 51, 1141 (2016)

    Article  Google Scholar 

  84. D. Pal, A. Keshav, Kinetics of reactive extraction of pyruvic acid using tributylamine dissolved in n-butyl acetate. Int. J. Chem. React. Eng. 13, 63 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharm Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, D., Keshav, A., Mazumdar, B. et al. Production and Recovery of Pyruvic Acid: Recent Advances. J. Inst. Eng. India Ser. E 98, 165–175 (2017). https://doi.org/10.1007/s40034-017-0101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-017-0101-4

Keywords

Navigation