Skip to main content
Log in

Effect of precursors on Cu2S counter electrode on the quantum dot sensitized solar cell performance

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Counter electrode of Cu2S on fluorine-doped tin oxide glass, which was synthesized by chemical bath deposition method in a nitrogen-purged environment with varying precursors and temperatures, is used for quantum dot sensitized solar cell fabrication. The morphology, composition and crystalline structure of the Cu2S film were characterized by scanning electron microscopy, energy dispersive X-ray and X-ray diffraction analysis. Electrochemical properties of the Cu2S film were measured by cyclic voltammetry measurement and the highest performance of JSC = 18.2 mA/cm2, VOC = 0.57 V, FF = 0.38 and η = 3.94% were recorded in the cell fabricated by the mixture of CuSO4 and Na2S2O3 precursors (1.0/1.0 ratio). It is the result of the enhancement of electrocatalytic activity, charge transfer and collection, and excited electron lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.T. Ha, H.C. Cuong, T.V. Nguyen, T.P.T. Nguyen, H.T. Dat, V.L. Quang, Environ. Prog. Sustain. Energy 34, 1774–1779 (2015)

    Article  Google Scholar 

  2. G. Hodes, J. Manassen, D. Cahen, J. Appl. Electrochem. 7, 181–182 (1977)

    Article  Google Scholar 

  3. T.T. Ha, H.T. Dat, Q.L. Vinh, Adv. OptoElectron. (2014). https://doi.org/10.1002/adom.201400106

    Article  Google Scholar 

  4. S. Virji, B.K. Richard, H.W. Bruce, Inorg. Chem. 45, 10467–10471 (2006)

    Article  Google Scholar 

  5. S. Giménez, M.S. Iván, M. Lorena, G. Nestor, L.V. Teresa, G. Roberto, J.D. Lina, S. Qing, T. Taro, B. Juan, Nanotechnology 20, 295204 (2009)

    Article  Google Scholar 

  6. V. Jovanovski, G.P. Victoria, G. Sixto, A. Eneko, C. Germán, G. Hans, T.Z. Ramon, M.S. Iván, B. Juan, J. Am. Chem. Soc. 133, 20156–20159 (2011)

    Article  Google Scholar 

  7. D.V. Esposito, D.D. Kevin, E.M. Brian, W.B. Robert, G.C. Jingguang, J. Electrochem. Soc. 156, B962 (2009)

    Article  Google Scholar 

  8. S. Choi, J.K. Hee, S.K. Seong, L. Jianping, K. Jeomoh, H.R. Jae, D.D. Russell, M.F. Alec, A.P. Fernando, Appl. Phys. Lett. 96, 221105 (2010)

    Article  ADS  Google Scholar 

  9. M. Fujii, N. Kazuki, F. Musashi, A. Tomoki, T. Hiroaki, J. Phys. Chem. C. 113, 16711–16716 (2009)

    Article  Google Scholar 

  10. Z. Yang, Y.C. Chia, W.L. Chi, T.C. Huan, Chem. Commun. 46, 5485–5487 (2010)

    Article  Google Scholar 

  11. Y.Y. Yang, X.Z. Quan, Z.W. Tian, F.Z. Li, M.H. Xiao, D.Z. Yi, H. Xing, M.L. Dong, H.L. Yan, B.M. Qing, Electrochim. Acta 88, 44–50 (2013)

    Article  Google Scholar 

  12. J.H. Zeng, C. Dan, F.W. Ye, B.J. Bin, J. Mater. Chem. C. 3, 12140–12148 (2015)

    Article  Google Scholar 

  13. J. Wang, M.R. Md, G. Chuangye, J.L. Jae, J. Ind. Eng. Chem. 62, 185–191 (2018)

    Article  Google Scholar 

  14. M. Deng, H. Shuqing, Z. Quanxin, L. Dongmei, L. Yanhong, S. Qing, T. Taro, M. Qingbo, Chem. Lett. 39, 1168–1170 (2010)

    Article  Google Scholar 

  15. A.P. Supriya, H. Sajjad, K.S. Nabeen, M. Naveed, J. Mohammed, J. Jongwan, G.P. Jea, C. Hyosung, S.K. Hak, Y.N. Yong, Energy 202, 117730 (2020)

    Article  Google Scholar 

  16. M. Que, G. Wenxi, Z. Xiaojia, L. Xiaoyi, H. Qilin, D. Lin, P. Caofeng, J. Mater. Chem.A. 2, 13661–13666 (2014)

    Article  Google Scholar 

  17. L. Li, C.A. Miguel, N.G. Steven, J. Song, Nanoscale 6, 2112–2118 (2014)

    Article  ADS  Google Scholar 

  18. H. Chen, Z. Liqun, L. Huicong, L. Weiping, J. Phys. Chem. C. 117, 3739–3746 (2013)

    Article  Google Scholar 

  19. T.P. Nguyen, T.T. Ha, T.N. Thu, P.H. Nhat, D.H. Thanh, V.L. Quang, Electrochim. Acta 282, 16–23 (2018)

    Article  Google Scholar 

  20. G. Yue, L. Youdao, W. Xin, W. Laisen, P. Dongliang, J. Mater. Chem. 22, 16437–16441 (2012)

    Article  Google Scholar 

  21. S. Wang, Z. Jingying, C. Chunhua, J. Power Sour. 195, 5379–5381 (2010)

    Article  Google Scholar 

  22. N.T. Thao, N.P. Ho, T.T. Ha, T.P. Nguyen, T.D. Huynh, Q.V. Lam, Opt. Mater. 84, 199–204 (2018)

    Article  ADS  Google Scholar 

  23. S. Maiti, A. Farazuddin, A. Pranav, J. Yogesh, D. Jayanta, K.H. Santosh, N.G. Hirendra, Langmuir 34, 50–57 (2018)

    Article  Google Scholar 

  24. F. Gillot, B. Simeon, D. Loic, M. Mathieu, M. Laure, Chem. Mater. 17, 6327–6337 (2005)

    Article  Google Scholar 

  25. C.H. Lai, W.H. Kuo, H.C. Ju, Y.L. Chung, J.H. Bing, J.C. Lih, J. Mater. Chem. 20, 6638–6645 (2010)

    Article  Google Scholar 

  26. S.-Y. Lee, M.-A. Park, J.-H. Kim, H. Kim, C.-J. Choi, D.-K. Lee, K.-S. Ahn, J. Electrochem. Soc. 160(11), H847 (2013)

    Article  Google Scholar 

  27. Y. Wang, Z. Qinghong, L. Yaogang, W. Hongzhi, Nanoscale 7, 6185–6192 (2015)

    Article  ADS  Google Scholar 

  28. C.K. Kamaja, R.D. Rami, D. Yasha, D. Joyashish, V.S. Manjusha, J. Power Sour. 315, 277–283 (2016)

    Article  Google Scholar 

  29. Z. Tachan, S. Menny, H. Idan, R. Sven, T. Shay, Z. Arie, J. Phys. Chem. C. 115, 6162–6166 (2011)

    Article  Google Scholar 

  30. H.J. Kim, K. Dong, S. Rao, A.D. Savariraj, S.K. Kim, K.S. Min, V.V.M.G. Chandu, K. Prabakar, Electrochim. Acta 127, 427–432 (2014)

    Article  Google Scholar 

  31. H. Chen, Z. Liqun, L. Huicong, L. Weiping, J. Power Sour. 245, 406–410 (2014)

    Article  Google Scholar 

  32. J. Raj, K. Prabakar, D. Savariraj, K. Hee, Electrochim. Acta 103, 231–236 (2013)

    Article  Google Scholar 

  33. D.H. Youn, S. Minsu, Y.K. Jae, W.J. Ji, C. Youngwoo, Y. Kijung, S.L. Jae, Chemsuschem 6, 261–267 (2013)

    Article  Google Scholar 

  34. N.T.K. Chung, P.T. Nguyen, H.T. Tung, D.H. Phuc, Molecules 26(9), 2638 (2021)

    Article  Google Scholar 

  35. D.H. Youn, B. Ganghong, H. Suenghoon, Y.K. Jae, W.J. Ji, P. Hunmin, H.C. Sun, S.L. Jae, J. Mater. Chem. A. 1, 8007–8015 (2013)

    Article  Google Scholar 

  36. L.L. Zhang, B.S. Hua, L.Y. Xue, W.W. Yan, H.H. Yun, L. Ming, P. Gang, C.T. Hua, B.N. Shi, L. Gan, Electrochim. Acta 152, 496–504 (2015)

    Article  Google Scholar 

  37. H.T. Tung, H.P. Dang, Phys. Status Solidi. 217, 2000383 (2020)

    Article  ADS  Google Scholar 

  38. S. Ni, L. Xiaohu, L. Tao, Y. Xuelin, Z. Lulu, J. Mater. Chem. A. 1, 1544–1547 (2013)

    Article  Google Scholar 

  39. M. Saadeldin, H.S. Soliman, H.A.M. Ali, K. Sawaby, Chin. Phys. B. 23, 046803 (2014)

    Article  ADS  Google Scholar 

  40. R. Vogel, K. Pohl, H. Weller, Chem. Phys. Lett. 174, 241–246 (1990)

    Article  ADS  Google Scholar 

  41. B. Nikolaos, D. Vassilios, B. Kyriakos, L. Panagiotis, Electrochim Acta 91, 246–252 (2013)

    Article  Google Scholar 

  42. Y. Chen, Wu. Qing-sheng, Y.-P. Ding, J. Braz. Chem. Soc. 18(5), 924–927 (2007)

    Article  Google Scholar 

  43. D.H. Phuc, T.T. Ha, Sol. Energy Mater. Sol. Cells 196, 78–83 (2019)

    Article  Google Scholar 

  44. W. Ahmad, Y. Zhichun, K. Jahangeer, J. Wenkui, J. Fan, C. Liang, L. Nishuang, L. Luying, G. Yihua, Sci. Rep. 6, 1–11 (2016)

    Article  Google Scholar 

  45. D. Huu Phuc, H. Thanh Tung, V.-C. Nguyen, M. Hanh Nguyen Thi, Molecules 26(10), 2865 (2021)

    Article  Google Scholar 

  46. I. Lim, D.Y. Lee, S.A. Patil, N.K. Shrestha, S.H. Kang, Y.C. Nah, W. Lee, S.H. Han, Mater. Chem. Phys. 148(3), 562–568 (2014)

    Article  Google Scholar 

  47. S. Yun, F. Wen, D. Tingting, H. Xieli, H. Xinlei, L. Xue, Z. Chen, D.L. Peter, Energy 164, 898–909 (2016)

    Article  Google Scholar 

  48. S.A. Pawar, S.P. Dipali, H.K. Jin, S.P. Pramod, C.S. Jae, Optical Mater. 66, 644–650 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by project B2020.SPD.03.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ha Thanh Tung or Bui Van Thang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phuong, H.N., Van Man, T., Tung, H.T. et al. Effect of precursors on Cu2S counter electrode on the quantum dot sensitized solar cell performance. J. Korean Phys. Soc. 80, 1133–1142 (2022). https://doi.org/10.1007/s40042-022-00460-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00460-8

Keywords

Navigation