Skip to main content
Log in

Towards cost analysis and energy estimation of simple multiplexer and demultiplexer using quantum dot cellular automata

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) is a rapidly intensifying nanotechnology that promises ultra-low power consumption, high speed, and ultra-small area requirements. Multiplexer and demultiplexer are the two fundamental and unavoidable blocks in quantum computation or nano communication using QCA. Two significant factors in evaluating the performance of a QCA circuit are energy dissipation and cost function. The total energy dissipation of the QCA multiplexer is 13 meV, whereas, the total energy dissipation of the demultiplexer is 10.4 meV utilizing QDE. The total energy dissipation of the multiplexer employing QCAPro at a fixed temperature of 2 K and a tunneling level of γ = 0.5EK is 21.67 meV, while the same for demultiplexer is 32.86 meV. The Runge–Kutta approximation approach was used to estimate energy using the tool QDE in the Coherence vector energy mode. In addition, the costs of both experimental objects have been determined. Multiplexer and demultiplexer area-delay costs (m2-cc) are 0.002 and 0.005, respectively; multiplexer QCA-specific cost is 90 scp, and demultiplexer QCA-specific cost is 20 scp; multiplexer and demultiplexer energy-delay costs (seV–scc) are 0.000206 and 0.000429, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993). https://doi.org/10.1088/0957-4484/4/1/004

    Article  Google Scholar 

  2. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997). https://doi.org/10.1109/5.573740

    Article  CAS  Google Scholar 

  3. Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Science 277(5328), 928–930 (1997). https://doi.org/10.1126/science.277.5328.928

    Article  CAS  Google Scholar 

  4. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994). https://doi.org/10.1063/1.356375

    Article  Google Scholar 

  5. Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74(10), 6227–6233 (1993). https://doi.org/10.1063/1.355196

    Article  CAS  Google Scholar 

  6. Tóth, G., Lent, C.S.: Quasiadiabatic switching for metal-island quantum-dot cellular automata. J. Appl. Phys. 85(5), 2977–2984 (1999). https://doi.org/10.1063/1.369063

    Article  Google Scholar 

  7. Kavitha, S. S., Kaulgud, N.: Quantum dot cellular automata (QCA) design for the realization of basic logic gates. In: 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, 2017, pp. 314–317 (2017). https://doi.org/10.1109/ICEECCOT.2017.8284519.

  8. Balakrishnan, L., Godhavari, T., Kesavan, S.: Effective design of logic gates and circuit using quantum cellular automata (QCA). In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, 2015, pp. 457–462 (2015). https://doi.org/10.1109/ICACCI.2015.7275651.

  9. Hashemi, S., Navi, K.: A novel robust QCA full-adder. Proc. Mater. Sci. 11(2015), 376–380 (2015). https://doi.org/10.1016/j.mspro.2015.11.133

    Article  CAS  Google Scholar 

  10. Mohammadi, M., Mohammadi, M., Gorgin, S.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron J 50(April 2016), 35–43 (2016). https://doi.org/10.1016/j.mejo.2016.02.004

    Article  Google Scholar 

  11. Lakshmi, S. K., Athisha, G., Karthikeyan, M., Ganesh, C.: Design of subtractor using nanotechnology based QCA. In: 2010 international conference on communication control and computing technologies, Ramanathapuram, 2010, pp. 384-388 (2010). https://doi.org/10.1109/ICCCCT.2010.5670582

  12. Ramachandran, S. S., Kumar, K. J. J.: Design of a 1-bit half and full subtractor using a quantum-dot cellular automaton (QCA). In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, 2017, pp. 2324–2327 (2017). https://doi.org/10.1109/ICPCSI.2017.8392132.

  13. Zoka, S., Gholami, M.: A novel efficient full adder–subtractor in QCA nanotechnology. Int Nano Lett 9, 51–54 (2019). https://doi.org/10.1007/s40089-018-0256-0

    Article  Google Scholar 

  14. Raj, M., Gopalakrishnan, L., Ko, S.: Design and analysis of novel QCA full adder-subtractor. Int. J. Electron. Lett. (2020). https://doi.org/10.1080/21681724.2020.1726479

    Article  Google Scholar 

  15. Hashemi, S., Navi, K.: New robust QCA D flip flop and memory structures. Microelectron. J. 43(12), 929–940 (2012). https://doi.org/10.1016/j.mejo.2012.10.007

    Article  Google Scholar 

  16. Patidar, M., Gupta, N.: An efficient design of edge-triggered synchronous memory element using quantum dot cellular automata with optimized energy dissipation. J. Comput. Electron. 19, 529–542 (2020). https://doi.org/10.1007/s10825-020-01457-x

    Article  Google Scholar 

  17. Kummamuru, R.K., Orlov, A.O., Ramasubramaniam, R., Lent, C.S., Bernstein, G.H., Snider, G.L.: Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Trans. Electron Devices 50(9), 1906–1913 (2003). https://doi.org/10.1109/TED.2003.816522

    Article  CAS  Google Scholar 

  18. Purkayastha, T., De, D., Chattopadhyay, T.: Universal shift register implementation using quantum dot cellular automata. Ain Shams Eng. J. 9(2), 291–310 (2018). https://doi.org/10.1016/j.asej.2016.01.011

    Article  Google Scholar 

  19. Taskin, B., Chiu, A., Salkind, J., Venutolo, D.: A shift-register-based QCA memory architecture. ACM J. Emerg. Technol. Comput. Syst. 5(1), 4.1-4.18 (2009). https://doi.org/10.1145/1482613.1482617

    Article  Google Scholar 

  20. Yang, X., Cai, L., Zhao, X., Zhang, N.: Design and simulation of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study. Microelectron. J. 41(2010), 56–63 (2010). https://doi.org/10.1016/j.mejo.2009.12.008

    Article  CAS  Google Scholar 

  21. Angizi, S., Moaiyeri, M.H., Farrokhi, S., Navi, K., Bagherzadeh, N.: Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess Microsyst. 39(7), 512–520 (2015). https://doi.org/10.1016/j.micpro.2015.07.011

    Article  Google Scholar 

  22. Heikalabad, S.R., Gadim, M.R.: Design of improved arithmetic logic unit in quantum-dot cellular automata. Int. J. Theor. Phys. 57, 1733–1747 (2018). https://doi.org/10.1007/s10773-018-3699-1

    Article  Google Scholar 

  23. Babaie, S., Sadoghifar, A., Bahar, A.N.: Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans. Circ. Syst. II Express Briefs 66(6), 963–967 (2019). https://doi.org/10.1109/TCSII.2018.2873797

    Article  Google Scholar 

  24. Khan, A., Mandal, S.: Robust multiplexer design and analysis using quantum dot cellular automata. Int. J. Theor. Phys. 58(3), 719–733 (2018). https://doi.org/10.1007/s10773-018-3970-5

    Article  Google Scholar 

  25. Khan, A., Arya, R.: Optimal demultiplexer unit design and energy estimation using quantum dot cellular automata. J. Supercomput. (2020). https://doi.org/10.1007/s11227-020-03320-z

    Article  Google Scholar 

  26. Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A novel architecture for quantum-dot cellular automata multiplexer. Int. J. Comput. Sci. Issues 8(1), 55–60 (2011)

    Google Scholar 

  27. Kianpour, M., Sabbaghi-Nadooshan, R.: Optimized design of multiplexor by quantum-dot cellular automata. Int. J. Nanosci. Nanotechnol 9(1), 15–24 (2013)

    Google Scholar 

  28. Chabi, A.M., Sayedsalehi, S., Angizi, S., Navi, K.: Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach. Int. Schol. Res. Not. 2014(463967), 1–9 (2014). https://doi.org/10.1155/2014/463967

    Article  Google Scholar 

  29. Sen, B., Goswami, M., Mazumdar, S., Sikdar, B.K.: Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput Elect Eng 45(July 2015), 42–54 (2015). https://doi.org/10.1016/j.compeleceng.2015.05.001

    Article  Google Scholar 

  30. Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J Comput Electron 15(September 2016), 968–981 (2016). https://doi.org/10.1007/s10825-016-0832-3

    Article  Google Scholar 

  31. Das, J.C., De, D.: Optimized multiplexer design and simulation using quantum dot-cellular automata. Indian J. Pure Appl. Phys. 54(12), 802–811 (2016)

    Google Scholar 

  32. Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano Electron. Phys. 9(1), 01012 (2017). https://doi.org/10.21272/jnep.9(1).01012

    Article  Google Scholar 

  33. Asfestani, M.N., Heikalabad, S.R.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Phys. B Phys. Conden. Matter 512(May 2017), 91–99 (2017). https://doi.org/10.1016/j.physb.2017.02.028

    Article  CAS  Google Scholar 

  34. Khosroshahy, M.B., Moaiyeri, M.H., Angizi, S., Bagherzadeh, N., navi, K. : Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess. Microsyst. 50(May 2017), 154–163 (2017). https://doi.org/10.1016/j.micpro.2017.03.009

    Article  Google Scholar 

  35. Ahmad, F.: An optimal design of QCA based 2n:1/1:2n multiplexer/demultiplexer and its efficient digital logic realization. Microprocess. Microsyst. 56(February 2018), 64–75 (2017). https://doi.org/10.1016/j.micpro.2017.10.010

    Article  Google Scholar 

  36. Ahmadpour, S., Mosleh, M.: A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J. Supercomput. 74(9), 4696–4716 (2018). https://doi.org/10.1007/s11227-018-2464-9

    Article  Google Scholar 

  37. Mosleh, M.: A novel design of multiplexer based on nano-scale quantum-dot cellular automata. Concurr Comput Pract Exp 2018(e5070), 1–16 (2018). https://doi.org/10.1002/cpe.5070

    Article  Google Scholar 

  38. Xingjun, L., Zhiwei, S., Hongping, C., Haghighi, M.R.J.: A new design of QCA-based nanoscale multiplexer and its usage in communications. Int. J. Commun Syst 33(4), 1–12 (2019). https://doi.org/10.1002/dac.4254

    Article  Google Scholar 

  39. AlKaldy, E., Majeed, A.H., Zainal, M.S., Nor, D.B.M.: Optimum multiplexer design in quantum-dot cellular automata. Indones. J. Elect. Eng. Comput. Sci. 17(1), 148–155 (2020). https://doi.org/10.11591/ijeecs.v17.i1.pp148-155

    Article  Google Scholar 

  40. Shah, N.A., Khanday, F.A., Bangi, Z.A., Iqbal, J.: Design of quantum-dot cellular automata (qca) based modular 1 to 2n demultiplexers. Int. J. Nanotechnol. Appl. 5(1), 47–58 (2011)

    Google Scholar 

  41. Iqbal, J., Khanday, F. A., Shah, N. A.: Design of quantum-dot cellular automata (qca) based modular 2n-1–2n mux-demux. In: Proceedings of IMPACT-2013, Aligarh, pp 189–193 (2013). https://doi.org/10.1109/MSPCT.2013.6782116.

  42. Sardinha, L.H.B., Costa, A.M.M., Neto, O.P.V., Vieira, L.F.M., Vieira, M.A.M.: NanoRouter: a quantum-dot cellular automata design. IEEE J. Sel. Areas Commun. 31(12), 825–834 (2013). https://doi.org/10.1109/JSAC.2013.SUP2.12130015

    Article  Google Scholar 

  43. Safoev, N., Jeon, J.: Low area complexity demultiplexer based on multilayer quantum-dot cellular automata. Int. J. Control Automat. 9(12), 165–178 (2016). https://doi.org/10.14257/ijca.2016.9.12.15

    Article  Google Scholar 

  44. Das, J.C., De, D.: Circuit switching with quantum-dot cellular automata. Nano Commun. Netw. 149(December 2017), 16–28 (2017). https://doi.org/10.1016/j.nancom.2017.09.002

    Article  Google Scholar 

  45. Khan, A., Arya, R.: Energy Dissipation and Cell Displacement Analysis of QCA Multiplexer for Nanocomputation. In: 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP), Chennai, India 2019, pp. 1–5 (2019). https://doi.org/10.1109/ICESIP46348.2019.8938359.

  46. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro—an error-power estimation tool for QCA circuit design. Proc. IEEE Int. Symp. Circ. Syst. (ISCAS) (2011). https://doi.org/10.1109/ISCAS.2011.5938081

    Article  Google Scholar 

  47. QCADesigner-E: (2017). Accessed: March 12, 2019. [Online]. Available at: https://github.com/FSillT/QCADesigner-E.

  48. Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8(1), 116–127 (2009). https://doi.org/10.1109/TNANO.2008.2005408

    Article  Google Scholar 

  49. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002). https://doi.org/10.1063/1.1421217

    Article  CAS  Google Scholar 

  50. Bahar, A.N., Wahid, K.A.: Design of an efficient N × N butterfly switching network in quantum-dot cellular automata (qca). IEEE Trans. Nanotechnol. 19, 147–155 (2020). https://doi.org/10.1109/TNANO.2020.2969166

    Article  CAS  Google Scholar 

  51. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004). https://doi.org/10.1109/TNANO.2003.820815

    Article  Google Scholar 

  52. Torres, F.S., Wille, R., Niemann, P., Drechsler, R.: An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 37(12), 3031–3041 (2018). https://doi.org/10.1109/TCAD.2018.2789782

    Article  Google Scholar 

  53. Torres, F. S., Niemann, P., Wille, R., Drechsler, R.: Breaking Landauer’s limit using quantum-dot cellular automata. Accessed online on January 12, 2019. https://arxiv.org/pdf/1811.03894.pdf.

  54. Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E.: A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans. Nanotechnol. 13(3), 476–487 (2014). https://doi.org/10.1109/TNANO.2014.2306754

    Article  CAS  Google Scholar 

  55. Khosroshahy, M.B., Moaiyeri, M.H., Navi, K., Bagherzadeh, N.: An energy and cost efficient majority-based ram cell in quantum-dot cellular automata. Results Phys. 7, 3543–3551 (2017). https://doi.org/10.1016/j.rinp.2017.08.067

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angshuman Khan or Rajeev Arya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Arya, R. Towards cost analysis and energy estimation of simple multiplexer and demultiplexer using quantum dot cellular automata. Int Nano Lett 12, 67–77 (2022). https://doi.org/10.1007/s40089-021-00352-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-021-00352-y

Keywords

Navigation