Skip to main content
Log in

Highly efficient tri-phase TiO2–Y2O3–V2O5 nanocomposite: structural, optical, photocatalyst, and antibacterial studies

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

In the present work, pristine anatase titanium oxide (TiO2), vanadium oxide (V2O5), and yttrium oxide (Y2O3) nanopowders (NPs), and tri-phase TiO2–Y2O3–V2O5 nanocomposite (NC) were prepared via a simple co-precipitation method. The grown products were characterized by employing a range of techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) analysis. The XRD diffraction pattern confirmed the formation of NC having TiO2 tetragonal, Y2O3 cubic, and V2O5 orthorhombic phases. FTIR spectra evident the presence of metal–oxygen bond in NPs and NC. The energy bandgap (2.55 eV) of NC is found in the range of visible region specified its use as an efficient photocatalyst under sunlight illumination. EDX analysis confirmed the existence of Ti, Y, and V in the nanocomposite. The antibacterial studies against Staphylococcus aureus, Klebsiella pneumonia, and Proteus vulgaris bacteria by varying concentrations (10, 20, 30, and 40 mg ml−1) showed that the NC has higher antibacterial activity than individual oxides. The photocatalytic activity exhibited that NC has the highest degradation efficiency 99.29%, 90.69%, and 99.83% against methylene blue (MB), safranin-O (SO), and methyl orange (MO) dyes as compared to pristine TiO2, V2O5, and Y2O3 NPs under 80 min direct sunlight irradiation. Furthermore, the grown NC is a good candidate for treating organic pollutants and bacteria inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Similar content being viewed by others

References

  1. Sathiyan, K., Bar-Ziv, R., Mendelson, O., Zidki, T.: Controllable synthesis of TiO2 nanoparticles and their photocatalytic activity in dye degradation. Mater. Res. Bull. 126, 110842 (2020)

    Article  CAS  Google Scholar 

  2. Parul, K., Badru, R., Singh, P.P., Kaushal, S.: Photodegradation of organic pollutants using heterojunctions: a review. J. Environ. Chem. Eng. 8, 103666 (2020)

    Article  CAS  Google Scholar 

  3. Oladipo, A.A., Ifebajo, A.O., Gazi, M.: Magnetic LDH-based CoO–NiFe2O4 catalyst with enhanced performance and recyclability for efficient decolorization of azo dye via Fenton-like reactions. Appl. Catal. B Environ. 243, 243–252 (2019)

    Article  CAS  Google Scholar 

  4. Gusain, R., Gupta, K., Joshi, P., Khatri, O.P.: Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Adv. Colloid Interface Sci. 272, 102009 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. Chatterjee, S., Bhanja, P., Ghosh, D., Kumar, P., Kanti Das, S., Dalapati, S., Bhaumik, A.: Metformin-templated nanoporous ZnO and covalent organic framework heterojunction photoanode for photoelectrochemical water oxidation. Chemsuschem 14, 408–416 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. Yang, X., Wang, D.: Photocatalysis: from fundamental principles to materials and applications. ACS Appl. Energy Mater. 1, 6657–6693 (2018)

    Article  CAS  Google Scholar 

  7. Dolai, S., Maiti, P., Ghorai, A., Bhunia, R., Paul, P.K., Ghosh, D.: Exfoliated molybdenum disulfide-wrapped CdS nanoparticles as a nano-heterojunction for photo-electrochemical water splitting. ACS Appl. Mater. Interfaces. 13, 438–448 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. Ruddaraju, L.K., Pammi, S.V.N., Pallela, P.N.V.K., Padavala, V.S., Kolapalli, V.R.M.: Antibiotic potentiation and anti-cancer competence through bio-mediated ZnO nanoparticles. Mater. Sci. Eng. C. 103, 109756 (2019)

    Article  CAS  Google Scholar 

  9. Mukhtar, F., Munawar, T., Shahid, M., Murtaza, N., Fayyaz, H.: Multi metal oxide NiO-Fe2O3-CdO nanocomposite-synthesis, photocatalytic and antibacterial properties. Appl. Phys. A. 126, 588 (2020)

    Article  CAS  Google Scholar 

  10. Zhang, X., Chen, W.F., Bahmanrokh, G., Kumar, V., Ho, N., Koshy, P., Sorrell, C.C.: Synthesis of V- and Mo-doped/codoped TiO2 powders for photocatalytic degradation of methylene blue. Nano Struct Nano Objects. 24, 100557 (2020)

    Article  CAS  Google Scholar 

  11. Baygi, N.J., Saghir, A.V., Beidokhti, S.M., Khaki, J.V.: Modified auto-combustion synthesis of mixed-oxides TiO2/NiO nanoparticles: physical properties and photocatalytic performance. Ceram. Int. 46, 15417–15437 (2020)

    Article  CAS  Google Scholar 

  12. Prakash, J., Sun, S., Swart, H.C., Gupta, R.K.: Noble metals-TiO2 nanocomposites: from fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications. Appl. Mater. Today. 11, 82–135 (2018)

    Article  Google Scholar 

  13. Munawar, T., Yasmeen, S., Hasan, M., Mahmood, K., Hussain, A., Ali, A., Arshad, M.I., Iqbal, F.: Novel tri-phase heterostructured ZnO–Yb2O3–Pr2O3 nanocomposite; structural, optical, photocatalytic and antibacterial studies. Ceram. Int. 46(8), 11101–11114 (2020)

    Article  CAS  Google Scholar 

  14. Hou, T.F., Johar, M.A., Boppella, R., Hassan, M.A., Patil, S.J., Ryu, S.W., Lee, D.W.: Vertically aligned one-dimensional ZnO/V2O5 core–shell hetero-nanostructure for photoelectrochemical water splitting. J. Energy Chem. 49, 262–274 (2020)

    Article  Google Scholar 

  15. Jayaraj, S.K., Sadishkumar, V., Arun, T., Thangadurai, P.: Enhanced photocatalytic activity of V2O5 nanorods for the photodegradation of organic dyes: a detailed understanding of the mechanism and their antibacterial activity. Mater. Sci. Semicond. Process. 85, 122–133 (2018)

    Article  CAS  Google Scholar 

  16. Sreedhar, A., Reddy, I.N., Hoai Ta, Q.T., Phuong Doan, T.H., Shim, J., Noh, J.S.: Unveiling the impact of interfacially engineered selective V2O5 nanobelt bundles with flake-like ZnO and Co–ZnO thin films for multifunctional visible-light water splitting and toxic gas sensing. J. Power Sources. 478, 229081 (2020)

    Article  CAS  Google Scholar 

  17. Zeleke, M.A., Kuo, D.H.: Synthesis and application of V2O5-CeO2 nanocomposite catalyst for enhanced degradation of methylene blue under visible light illumination. Chemosphere 235, 935–944 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. Maria Magdalane, C., Kaviyarasu, K., Judith Vijaya, J., Siddhardha, B., Jeyaraj, B.: Facile synthesis of heterostructured cerium oxide/yttrium oxide nanocomposite in UV light induced photocatalytic degradation and catalytic reduction: synergistic effect of antimicrobial studies. J. Photochem. Photobiol. B Biol. 173, 23–34 (2017)

    Article  CAS  Google Scholar 

  19. Chaki Borrás, M., Sluyter, R., Barker, P.J., Konstantinov, K., Bakand, S.: Y2O3 decorated TiO2 nanoparticles: enhanced UV attenuation and suppressed photocatalytic activity with promise for cosmetic and sunscreen applications. J. Photochem. Photobiol. B Biol. 207, 111883 (2020)

    Article  CAS  Google Scholar 

  20. Karunakaran, C., Dhanalakshmi, R., Anilkumar, P.: Photodegradation of phenol on Y2O3 surface. Synergism by semiconductors. J. Hazard. Mater. 167, 664–668 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, X., Wu, P., Liu, M., Lu, D., Ming, J., Li, C., Ding, J., Yan, Q., Fang, P.: Y2O3 modified TiO2 nanosheets enhanced the photocatalytic removal of 4-chlorophenol and Cr (VI) in sun light. Appl. Surf. Sci. 410, 134–144 (2017)

    Article  CAS  Google Scholar 

  22. Mondal, M., Dutta, H., Pradhan, S.K.: Enhanced photocatalysis performance of mechano-synthesized V2O5–TiO2 nanocomposite for wastewater treatment: correlation of structure with photocatalytic performance. Mater. Chem. Phys. 248, 122947 (2020)

    Article  CAS  Google Scholar 

  23. Fallah Shojaei, A., Shams-Nateri, A., Ghomashpasand, M.: Comparative study of photocatalytic activities of magnetically separable WO3/TiO2/Fe3O4 nanocomposites and TiO2, WO3/TiO2 and TiO2/Fe3O4 under visible light irradiation. Superlattices Microstruct. 88, 211–224 (2015)

    Article  CAS  Google Scholar 

  24. Ismail, A.A.: Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol-gel method. Appl. Catal. B Environ. 58, 115–121 (2005)

    Article  CAS  Google Scholar 

  25. Kaleji, B., Mousaei, M., Halakouie, H., Ahmadi, A.: Sol-gel synthesis of ZnO nanoparticles and ZnO-TiO2-SiO2 nanocomposites and their photo-catalyst investigation in methylene blue degradation. J. Nanostruct. 5, 219–225 (2015)

    CAS  Google Scholar 

  26. Yasmeen, S., Iqbal, F., Munawar, T., Nawaz, M.A., Asghar, M., Hussain, A.: Synthesis, structural and optical analysis of surfactant assisted ZnO–NiO nanocomposites prepared by homogeneous precipitation method. Ceram. Int. 45, 17859–17873 (2019)

    Article  CAS  Google Scholar 

  27. Mukhtar, F., Munawar, T., Nadeem, M.S., ur Rahman, M.N., Riaz, M., Iqbal, F.: Dual S-scheme heterojunction ZnO-V2O5-WO3 nanocomposite with enhanced photocatalytic and antimicrobial activity. Mater. Chem. Phys. 263, 124372 (2021)

    Article  CAS  Google Scholar 

  28. Munawar, T., Mukhtar, F., Nadeem, M.S., Mahmood, K., Hussain, A., Ali, A., Arshad, M.I., un Nabi, M.A., Iqbal, F.: Structural, optical, electrical, and morphological studies of rGO anchored direct dual-Z-scheme ZnO-Sm2O3–Y2O3 heterostructured nanocomposite: An efficient photocatalyst under sunlight. Solid State Sci. 106, 106307 (2020)

    Article  CAS  Google Scholar 

  29. Munawar, T., Iqbal, F., Yasmeen, S., Mahmood, K., Hussain, A.: Multi metal oxide NiO-CdO-ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceram. Int. 46, 2421–2437 (2019)

    Article  CAS  Google Scholar 

  30. Pelicano, C.M., Rapadas, N.J., Magdaluyo, E.: X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method. AIP Conf. Proc. 1901, 020016 (2017)

    Article  CAS  Google Scholar 

  31. Senthil Saravanan, M.S., Sivaprasad, K., Susila, P., Kumaresh Babu, S.P.: Anisotropy models in precise crystallite size determination of mechanically alloyed powders. Phys. B Condens. Matter. 406, 165–168 (2011)

    Article  CAS  Google Scholar 

  32. Anand, S., Amaliya, A.P., Janifer, M.A., Pauline, S.: Structural, morphological and dielectric studies of zirconium substituted CoFe2O4 nanoparticles. Mod. Electron. Mater. 3, 168–173 (2017)

    Article  Google Scholar 

  33. Darwish, A.S., Sayed, M.A., Shebl, A.: Cuttlefish bone stabilized Ag3VO4 nanocomposite and its Y2O3-decorated form: Waste-to-value development of efficiently ecofriendly visible-light-photoactive and biocidal agents for dyeing, bacterial and larvae depollution of Egypt’s wastewater. J. Photochem. Photobiol. A Chem. 401, 112749 (2020)

    Article  CAS  Google Scholar 

  34. Suresh, R., Giribabu, K., Manigandan, R., Munusamy, S., Praveen Kumar, S., Muthamizh, S., Stephen, A., Narayanan, V.: Doping of Co into V2O5 nanoparticles enhances photodegradation of methylene blue. J. Alloys Compd. 598, 151–160 (2014)

    Article  CAS  Google Scholar 

  35. Komaraiah, D., Radha, E., Kalarikkal, N., Sivakumar, J., Ramana Reddy, M.V., Sayanna, R.: Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceram. Int. 45, 25060–25068 (2019)

    Article  CAS  Google Scholar 

  36. Yousefi, R., Jamali-Sheini, F., Cheraghizade, M., Zaman, L.: Synthesis and characterization of Pb-doped ZnO nanoparticles and their photocatalytic applications. Mater. Res. Innov. 20, 121–127 (2016)

    Article  CAS  Google Scholar 

  37. Sivakumar, S., Venkatesan, A., Soundhirarajan, P., Khatiwada, C.P.: Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 1751–1759 (2015)

    Article  CAS  Google Scholar 

  38. Juma, A.O., Arbab, E.A.A., Muiva, C.M., Lepodise, L.M.: Synthesis and characterization of CuO-NiO-ZnO mixed metal oxide nanocomposite. J. Alloys Compd. 723, 866–872 (2017)

    Article  CAS  Google Scholar 

  39. Hassanien, A.S., Akl, A.A.: Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)

    Article  CAS  Google Scholar 

  40. Mosquera, E., Del Pozo, I., Morel, M.: Structure and red shift of optical band gap in CdO-ZnO nanocomposite synthesized by the sol gel method. J. Solid State Chem. 206, 265–271 (2013)

    Article  CAS  Google Scholar 

  41. Bakr, N.A., Fune, A.M., Waman, V.S., Kamble, M.M., Hawaldar, R.R., Amalnerkar, D.P., Gosavi, S.W., Jadkar, S.R.: Determination of the optical parameters of a-Si: H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only. Pramana J. Phys. 76, 519–531 (2011)

    Article  CAS  Google Scholar 

  42. Nama Manjunatha, K., Paul, S.: Investigation of optical properties of nickel oxide thin films deposited on different substrates. Appl. Surf. Sci. 352, 10–15 (2015)

    Article  CAS  Google Scholar 

  43. Hassanien, A.S., Akl, A.A.: Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50-xSex thin films. J. Alloys Compd. 648, 280–290 (2015)

    Article  CAS  Google Scholar 

  44. Ohwofosirai, A.: A study of the optical conductivity, extinction coefficient and dielectric function of CdO by sucessive ionic layer adsorption and reaction (SILAR) techniques. Am. Chem. Sci. J. 4, 736–744 (2014)

    Article  Google Scholar 

  45. Munawar, T., Yasmeen, S., Mukhtar, F., Nadeem, M.S., Mahmood, K., Saqib Saif, M., Hasan, M., Ali, A., Hussain, F., Iqbal, F.: Zn0.9Ce0.05M0.05O (M = Er, Y, V) nanocrystals: Structural and energy bandgap engineering of ZnO for enhancing photocatalytic and antibacterial activity. Ceram. Int. 46, 14369–14383 (2020)

    Article  CAS  Google Scholar 

  46. Oladipo, A.A.: Rapid photocatalytic treatment of high-strength olive mill wastewater by sunlight and UV-induced CuCr2O4@CaFe–LDO. J. Water Process Eng. 40, 101932 (2021)

    Article  Google Scholar 

  47. Khanizadeh, B., Khosravi, M., Behnajady, M.A., Shamel, A., Vahid, B.: Mg and La Co-doped ZnO nanoparticles prepared by sol–gel method: synthesis, characterization and photocatalytic activity. Period. Polytech. Chem. Eng. 64, 1–14 (2019)

    Article  Google Scholar 

  48. Tayade, R.J., Kulkarni, R.G., Jasra, R.V.: Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind. Eng. Chem. Res. 45, 5231–5238 (2006)

    Article  CAS  Google Scholar 

  49. Oladipo, A.A.: CuCr2O4@CaFe–LDO photocatalyst for remarkable removal of COD from high-strength olive mill wastewater. J. Colloid Interface Sci. 591, 193–202 (2021)

    Article  CAS  PubMed  Google Scholar 

  50. Huiting, L., Wenhong, F., Dong, H., Liu, L.: Dependence of the irradiation conditions and crystalline phase of TiO2 nanoparticles on their toxicity to Daphnia magna Huiting. J. Hous. Elderly. 8, 71–84 (1992)

    Google Scholar 

  51. Le, T.K., Kang, M., Kim, S.W.: A review on the optical characterization of V2O5 micro-nanostructures. Ceram. Int. 45, 15781–15798 (2019)

    Article  CAS  Google Scholar 

  52. Lei, Y., Huo, J., Liao, H.: Microstructure and photocatalytic properties of polyimide/heterostructured NiO-Fe2O3-ZnO nanocomposite films via an ion-exchange technique. RSC Adv. 7, 40621–40631 (2017)

    Article  CAS  Google Scholar 

  53. Munawar, T., Yasmeen, S., Hussain, F., Mahmood, K., Hussain, A., Asghar, M., Iqbal, F.: Synthesis of novel heterostructured ZnO-CdO-CuO nanocomposite: characterization and enhanced sunlight driven photocatalytic activity. Mater. Chem. Phys. 249, 122983 (2020)

    Article  CAS  Google Scholar 

  54. Zarrin, S., Heshmatpour, F.: Photocatalytic activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as new nanocomposites for degradation of organic pollutants. J. Hazard. Mater. 351, 147–159 (2018)

    Article  CAS  PubMed  Google Scholar 

  55. Munawar, T., Mukhtar, F., Yasmeen, S., Naveed-ur-Rehman, M., Nadeem, M.S., Riaz, M., Mansoor, M., Iqbal, F.: Sunlight-induced photocatalytic degradation of various dyes and bacterial inactivation using CuO–MgO–ZnO nanocomposite. Environ Sci Pollut Res 1–18 (2021)

  56. Karthik, K., Dhanuskodi, S., Gobinath, C., Prabukumar, S., Sivaramakrishnan, S.: Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities. J. Mater. Sci. Mater. Electron. 29, 5459–5471 (2018)

    Article  CAS  Google Scholar 

  57. Nuengmatcha, P., Chanthai, S., Mahachai, R., Oh, W.C.: Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation. Dye. Pigment. 134, 487–497 (2016)

    Article  CAS  Google Scholar 

  58. Bhoi, Y.P., Fang, F., Zhou, X., Li, Y., Sun, X., Wang, J., Huang, W.: Single step combustion synthesis of novel Fe2TiO5/α-Fe2O3/TiO2 ternary photocatalyst with combined double type-II cascade charge migration processes and efficient photocatalytic activity. Appl. Surf. Sci. 525, 146571 (2020)

    Article  CAS  Google Scholar 

  59. Munawar, T., Mukhtar, F., Nadeem, M.S., Riaz, M., ur Rahman, M.N., Mahmood, K., Hasan, M., Arshad, M.I., Hussain, F., Hussain, A., Iqbal, F.: Novel photocatalyst and antibacterial agent; direct dual Z-scheme ZnO–CeO2-Yb2O3 heterostructured nanocomposite. Solid State Sci. 109, 106446 (2020)

    Article  CAS  Google Scholar 

  60. Subhan, A., Ahmed, T., Uddin, N., Kalam, A., Begum, K.: Synthesis, characterization, PL properties, photocatalytic and antibacterial activities of nano multi-metal oxide NiO.CeO2.ZnO. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 824–831 (2015)

    Article  CAS  Google Scholar 

  61. Subhan, M.A., Uddin, N., Sarker, P., Nakata, H., Makioka, R.: Synthesis, characterization, low temperature solid state PL and photocatalytic activities of Ag2O·CeO2·ZnO nanocomposite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 151, 56–63 (2015)

    Article  CAS  Google Scholar 

  62. Munawar, T., Yasmeen, S., Hussain, A., Akram, M., Iqbal, F.: Novel direct dual-Z-scheme ZnO-Er2O3-Yb2O3 heterostructured nanocomposite with superior photocatalytic and antibacterial activity. Mater. Lett. 264, 127357 (2020)

    Article  CAS  Google Scholar 

  63. Subhan, M.A., Uddin, N., Sarker, P., Azad, A.K., Begum, K.: Photoluminescence, photocatalytic and antibacterial activities of CeO2·CuO·ZnO nanocomposite fabricated by co-precipitation method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 839–850 (2015)

    Article  CAS  Google Scholar 

  64. Ravichandran, K., Chidhambaram, N., Gobalakrishnan, S.: Copper and graphene activated ZnO nanopowders for enhanced photocatalytic and antibacterial activities. J. Phys. Chem. Solids. 93, 82–90 (2016)

    Article  CAS  Google Scholar 

  65. Zhen, J.B., Kang, P.W., Zhao, M.H., Yang, K.W.: Silver nanoparticle conjugated star PCL-b-AMPs copolymer as nanocomposite exhibits efficient antibacterial properties. Bioconjug. Chem. 31, 51–63 (2020)

    Article  CAS  PubMed  Google Scholar 

  66. Jana, T.K., Maji, S.K., Pal, A., Maiti, R.P., Dolai, T.K., Chatterjee, K.: Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology. J. Colloid Interface Sci. 480, 9–16 (2016)

    Article  CAS  PubMed  Google Scholar 

  67. Ramasamy Raja, V., Rani Rosaline, D., Suganthi, A., Rajarajan, M.: Ultrasonic assisted synthesis with enhanced visible-light photocatalytic activity of NiO/Ag3VO4 nanocomposite and its antibacterial activity. Ultrason. Sonochem. 44, 73–85 (2018)

    Article  CAS  PubMed  Google Scholar 

  68. Elango, M., Deepa, M., Subramanian, R., Saraswathy, G.: Synthesis, structural characterization and antimicrobial activities of polyindole stabilized Ag-Co3O4 nanocomposite by reflux condensation method. Mater. Chem. Phys. 216, 305–315 (2018)

    Article  CAS  Google Scholar 

  69. Gurusamy, S., Kulanthaisamy, M.R., Hari, D.G., Veleeswaran, A., Thulasinathan, B., Muthuramalingam, J.B., Balasubramani, R., Chang, S.W., Arasu, M.V., Al-Dhabi, N.A., Selvaraj, A., Alagarsamy, A.: Environmental friendly synthesis of TiO2-ZnO nanocomposite catalyst and silver nanomaterilas for the enhanced production of biodiesel from Ulva lactuca seaweed and potential antimicrobial properties against the microbial pathogens. J. Photochem. Photobiol. B Biol. 193, 118–130 (2019)

    Article  CAS  Google Scholar 

  70. Thaya, R., Malaikozhundan, B., Vijayakumar, S., Sivakamavalli, J., Jeyasekar, R., Shanthi, S., Vaseeharan, B., Ramasamy, P., Sonawane, A.: Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages. Microb. Pathog. 100, 124–132 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Iqbal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6358 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhtar, F., Munawar, T., Nadeem, M.S. et al. Highly efficient tri-phase TiO2–Y2O3–V2O5 nanocomposite: structural, optical, photocatalyst, and antibacterial studies. J Nanostruct Chem 12, 547–564 (2022). https://doi.org/10.1007/s40097-021-00430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00430-9

Keywords

Navigation