Skip to main content
Log in

Biodegradable antibacterial and antioxidant nanocomposite films based on dextrin for bioactive food packaging

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Food packaging is considered an inactive barrier that defends foods from environmental issues, chemical, and microbiological contaminants. In the current research, bioactive films based on dextrin (Dex), polyvinyl alcohol (PVA), and TiO2 nanoparticles with weight ratios (50:50:0, F1), (60:40:0, F2), (70:30:0, F3), (50:50:5, C1), (60:40:5, C2), and (70:30:5, C3) were constructed by a solvent casting process for application in bioactive food packaging. The FE-SEM images exhibited a relatively uniform distribution of TiO2 nanoparticles. The TGA thermogram of Dex@PVA@TiO2 nanocomposite films displayed that the thermal stability of films enhanced compared to PVA and Dex samples, owing to the presence of TiO2 nanoparticles. The water solubility of Dex@PVA@TiO2 nanocomposite films increased from 38.46 to 53 wt% with the increase of Dex content from 50 to 70 wt% while the solubility of nanocomposites decreased due to TiO2 nanoparticles compared to PVA/Dex blends. The results showed that the presence of TiO2 nanoparticles (5 wt%) into Dex@PVA films enhanced the biofilm's tensile strength, compared to Dex and PVA films. The incorporation of TiO2 nanoparticles into the Dex@PVA films enriched their antioxidant activity to 41% in ethanolic solution (EtOH 95% v/v). Additionally, the prepared films illustrated selective antibacterial activity against Enterococcus faecalis (as a food-borne pathogenic Gram-positive bacterium). These nanocomposites can be applied as a low-cost and suitable bioactive food packaging purpose in the different food packaging industries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cazón, P., Velazquez, G., Ramírez, J.A., Vázquez, M.: Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll. 68, 136–148 (2017)

    Article  CAS  Google Scholar 

  2. Liu, Y., Ahmed, S., Sameen, D.E., Wang, Y., Lu, R., Dai, J., Li, S., Qin, W.: A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci. Technol. 112, 532–546 (2021)

    Article  CAS  Google Scholar 

  3. Attaran, S.A., Hassan, A., Wahit, M.U.: Materials for food packaging applications based on bio-based polymer nanocomposites. J. Thermoplast. Compos. Mater. 30, 143–173 (2017)

    Article  CAS  Google Scholar 

  4. Wu, F., Misra, M., Mohanty, A.K.: Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 117, 101395 (2021)

    Article  CAS  Google Scholar 

  5. Arun, R., Shruthy, R., Preetha, R., Sreejit, V.: Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging. Chemosphere 291, 132786 (2021)

    Article  PubMed  CAS  Google Scholar 

  6. Jafarzadeh, S., Salehabadi, A., Nafchi, A.M., Oladzadabbasabadi, N., Jafari, S.M.: Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends Food Sci. Technol. 116, 218–231 (2021)

    Article  CAS  Google Scholar 

  7. Khodaei, D., Álvarez, C., Mullen, A.M.: Biodegradable packaging materials from animal processing co-Products and wastes: an overview. Polymers (Basel) 13, 2561 (2021)

    Article  CAS  Google Scholar 

  8. Atanase, L.I.: Micellar drug delivery systems based on natural biopolymers. Polymers (Basel) 13, 477 (2021)

    Article  CAS  Google Scholar 

  9. Zare, E.N., Lakouraj, M.M.: Biodegradable polyaniline/dextrin conductive nanocomposites: synthesis, characterization, and study of antioxidant activity and sorption of heavy metal ions. Iran. Polym. J. 23, 257–266 (2014)

    Article  CAS  Google Scholar 

  10. Yoplac, I., Vargas, L., Robert, P., Hidalgo, A.: Characterization and antimicrobial activity of microencapsulated citral with dextrin by spray drying. Heliyon 7, e06737 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hadidi, M., Jafarzadeh, S., Forough, M., Garavand, F., Alizadeh, S., Salehabadi, A., Khaneghah, A.M., Jafari, S.M.: Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends Food Sci. Technol. 120, 154–173 (2022)

    Article  CAS  Google Scholar 

  12. Gaikwad, K.K., Singh, S., Ajji, A.: Moisture absorbers for food packaging applications. Environ. Chem. Lett. 17, 609–628 (2019)

    Article  CAS  Google Scholar 

  13. Totosaus, A., Godoy, I.A., Ariza-Ortega, T.J.: Structural and mechanical properties of edible films from composite mixtures of starch, dextrin and different types of chemically modified starch. Int. J. Polym. Anal. Charact. 25, 517–528 (2020)

    Article  CAS  Google Scholar 

  14. Liu, B., Xu, H., Zhao, H., Liu, W., Zhao, L., Li, Y.: Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydr. Polym. 157, 842–849 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. Lu, W., Chen, M., Cheng, M., Yan, X., Zhang, R., Kong, R., Wang, J., Wang, X.: Development of antioxidant and antimicrobial bioactive films based on Oregano essential oil/mesoporous nano-silica/sodium alginate. Food Packag. Shelf Life 29, 100691 (2021)

    Article  CAS  Google Scholar 

  16. Al-Tayyar, N.A., Youssef, A.M., Al-hindi, R.: Antimicrobial food packaging based on sustainable bio-based materials for reducing foodborne pathogens: a review. Food Chem. 310, 125915 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. Azeredo, H.M.C., Otoni, C.G., Corrêa, D.S., Assis, O.B.G., de Moura, M.R., Mattoso, L.H.C.: Nanostructured antimicrobials in food Packaging—recent advances. Biotechnol. J. 14, 1900068 (2019)

    Article  CAS  Google Scholar 

  18. Zhang, X., Liu, Y., Yong, H., Qin, Y., Liu, J., Liu, J.: Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocoll. 94, 80–92 (2019)

    Article  CAS  Google Scholar 

  19. Babudurai, M., Nwakanma, O., Romero-Nuñez, A., Manisekaran, R., Subramaniam, V., Castaneda, H., Jantrania, A.: Mechanical activation of TiO2/Fe2O3 nanocomposite for arsenic adsorption: effect of ball-to-powder ratio and milling time. J. Nanostruct. Chem. 11, 619–632 (2021)

    Article  CAS  Google Scholar 

  20. Gulla, S., Lomada, D., Araveti, P.B., Srivastava, A., Murikinati, M.K., Reddy, K.R., Reddy, M.C., Altalhi, T.: Titanium dioxide nanotubes conjugated with quercetin function as an effective anticancer agent by inducing apoptosis in melanoma cells. J. Nanostruct. Chem. 11, 721–734 (2021)

    Article  CAS  Google Scholar 

  21. Wang, J., Wang, K., He, Z.-H., Li, S.-S., Zhang, R.-R., Guo, P., Wang, W., Yang, Y., Liu, Z.-T.: Solvent-induced synthesis of hierarchical TiO2 nanoflowers with tunable morphology by monolayer self-assembly for probing the photocatalytic performance. J. Nanostruct. Chem. (2021). https://doi.org/10.1007/s40097-021-00445-2

    Article  Google Scholar 

  22. Meghdad, P., Hiwa, H., Simin, N., Nahid, A., Behzad, S., Toba, K.: Optimization of photocatalytic degradation of methyl orange using immobilized scoria-Ni/TiO2 nanoparticles. J. Nanostruct. Chem. 10, 143–159 (2020)

    Article  CAS  Google Scholar 

  23. Lan, W., Wang, S., Zhang, Z., Liang, X., Liu, X., Zhang, J.: Development of red apple pomace extract/chitosan-based films reinforced by TiO2 nanoparticles as a multifunctional packaging material. Int. J. Biol. Macromol. 168, 105–115 (2021)

    Article  CAS  PubMed  Google Scholar 

  24. Abutalib, M.M., Rajeh, A.: Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications. Polym. Test. 93, 107013 (2021)

    Article  CAS  Google Scholar 

  25. Ni, Y., Sun, J., Wang, J.: Enhanced antimicrobial activity of konjac glucomannan nanocomposite films for food packaging. Carbohydr. Polym. 267, 118215 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. Narasagoudr, S.S., Hegde, V.G., Chougale, R.B., Masti, S.P., Vootla, S., Malabadi, R.B.: Physico-chemical and functional properties of rutin induced chitosan/poly (vinyl alcohol) bioactive films for food packaging applications. Food Hydrocoll. 109, 106096 (2020)

    Article  CAS  Google Scholar 

  27. Sekhavat Pour, Z., Makvandi, P., Ghaemy, M.: Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly(vinyl alcohol). Int. J. Biol. Macromol. 80, 596–604 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. Ortega-Toro, R., Contreras, J., Talens, P., Chiralt, A.: Physical and structural properties and thermal behaviour of starch-poly(ε-caprolactone) blend films for food packaging. Food Packag. Shelf Life 5, 10–20 (2015)

    Article  Google Scholar 

  29. Pooresmaeil, M., Namazi, H.: Preparation and characterization of polyvinyl alcohol/β-cyclodextrin/GO-Ag nanocomposite with improved antibacterial and strength properties. Polym. Adv. Technol. 30, 447–456 (2019)

    Article  CAS  Google Scholar 

  30. Ashwar, B.A., Shah, A., Gani, A., Shah, U., Gani, A., Wani, I.A., Wani, S.M., Masoodi, F.A.: Rice starch active packaging films loaded with antioxidants-development and characterization. Starch/Staerke 67, 294–302 (2015)

    Article  CAS  Google Scholar 

  31. Shi, L., Ao, L., Kang, H., Su, H.: Evaluation of biodegradable films made of waste mycelium and poly (vinyl alcohol) on the yield of Pak-Choi. J. Polym. Environ. 20, 492–500 (2012)

    Article  CAS  Google Scholar 

  32. Jipa, I.M., Stoica, A., Stroescu, M., Dobre, L.-M., Dobre, T., Jinga, S., Tardei, C.: Potassium sorbate release from poly (vinyl alcohol)-bacterial cellulose films. Chem. Pap. 66, 138–143 (2012)

    Article  CAS  Google Scholar 

  33. dos Reis, E.F., Campos, F.S., Lage, A.P., Leite, R.C., Heneine, L.G., Vasconcelos, W.L., Lobato, Z.I.P., Mansur, H.S.: Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater. Res. 9, 185–191 (2006)

    Article  Google Scholar 

  34. Dobrucka, R.: Synthesis of titanium dioxide nanoparticles using Echinacea purpurea herba. Iran. J. Pharm. Res. IJPR. 16, 756 (2017)

    PubMed  Google Scholar 

  35. Rajakumar, G., Rahuman, A.A., Roopan, S.M., Khanna, V.G., Elango, G., Kamaraj, C., Zahir, A.A., Velayutham, K.: Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 91, 23–29 (2012)

    Article  CAS  Google Scholar 

  36. Idris, A., Majidnia, Z., Nor Kamarudin, K.S.: Photocatalyst treatment for lead (II) using titanium oxide nanoparticles embedded in PVA-alginate beads. Desalin. Water Treat. 57, 5035–5044 (2016)

    Article  CAS  Google Scholar 

  37. Dadkhah, S., Rajabi, Y., Zare, E.N.: Thermal lensing effect in laser nanofluids based on poly (aniline-co-ortho phenylenediamine)@TiO2 interaction. J. Electron. Mater. 50, 4896–4907 (2021)

    Article  CAS  Google Scholar 

  38. Maleki, A., Hassanzadeh-Afruzi, F., Varzi, Z., Esmaeili, M.S.: Magnetic dextrin nanobiomaterial: an organic-inorganic hybrid catalyst for the synthesis of biologically active polyhydroquinoline derivatives by asymmetric Hantzsch reaction. Mater. Sci. Eng. C. 109, 110502 (2020)

    Article  CAS  Google Scholar 

  39. Abdel-Hady, E.E., Mohamed, H.F.M., Abdel-Hamed, M.O., Gomaa, M.M.: Physical and electrochemical properties of PVA/TiO2 nanocomposite membrane. Adv. Polym. Technol. 37, 3842–3853 (2018)

    Article  CAS  Google Scholar 

  40. Shi, R., Bi, J., Zhang, Z., Zhu, A., Chen, D., Zhou, X., Zhang, L., Tian, W.: The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydr. Polym. 74, 763–770 (2008)

    Article  CAS  Google Scholar 

  41. Salleh, M.S.N., Nor, N.N.M., Mohd, N., Draman, S.F.S.: Water resistance and thermal properties of polyvinyl alcohol-starch fiber blend film. AIP Conf. Proc. 1809, 20045 (2017)

    Article  Google Scholar 

  42. Das, D., Patra, P., Ghosh, P., Rameshbabu, A.P., Dhara, S., Pal, S.: Dextrin and poly (lactide)-based biocompatible and biodegradable nanogel for cancer targeted delivery of doxorubicin hydrochloride. Polym. Chem. 7, 2965–2975 (2016)

    Article  CAS  Google Scholar 

  43. Zhen, Y., Zhang, T., Jiang, B., Chen, J.: Purification and characterization of resistant dextrin. Foods. 10, 185 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zoccal, J.V.M., Arouca, F.O., Gonçalves, J.A.S.: Synthesis and characterization of TiO2 nanoparticles by the method pechini. Mater. Sci. Forum. 660, 385–390 (2010)

    Article  CAS  Google Scholar 

  45. Cazón, P., Vázquez, M., Velazquez, G.: Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: evaluation of water adsorption, mechanical properties, light-barrier properties and transparency. Carbohydr. Polym. 195, 432–443 (2018)

    Article  PubMed  CAS  Google Scholar 

  46. Yildiz, E., Bayram, I., Sumnu, G., Sahin, S., Ibis, O.I.: Development of pea flour based active films produced through different homogenization methods and their effects on lipid oxidation. Food Hydrocoll. 111, 106238 (2021)

    Article  CAS  Google Scholar 

  47. Guo, J., Ge, L., Li, X., Mu, C., Li, D.: Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocoll. 39, 243–250 (2014)

    Article  CAS  Google Scholar 

  48. Mostafavi, F.S., Kadkhodaee, R., Emadzadeh, B., Koocheki, A.: Preparation and characterization of tragacanth–locust bean gum edible blend films. Carbohydr. Polym. 139, 20–27 (2016)

    Article  CAS  PubMed  Google Scholar 

  49. Youssef, A.M., El-Sayed, H.S., Islam, E.-N., El-Sayed, S.M.: Preparation and characterization of novel bionanocomposites based on garlic extract for preserving fresh Nile tilapia fish fillets. RSC Adv. 11, 22571–22584 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Noshirvani, N., Ghanbarzadeh, B., Rezaei Mokarram, R., Hashemi, M.: Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packag. Shelf Life 11, 106–114 (2017)

    Article  Google Scholar 

  51. Haghighi, H., Gullo, M., La China, S., Pfeifer, F., Siesler, H.W., Licciardello, F., Pulvirenti, A.: Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocoll. 113, 106454 (2021)

    Article  CAS  Google Scholar 

  52. Yadav, S., Mehrotra, G.K., Dutta, P.K.: Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chem. 334, 127605 (2021)

    Article  CAS  PubMed  Google Scholar 

  53. Pique, T.M., Perez, C.J., Alvarez, V.A., Vazquez, A.: Water soluble nanocomposite films based on poly (vinyl alcohol) and chemically modified montmorillonites. J. Compos. Mater. 48, 545–553 (2014)

    Article  CAS  Google Scholar 

  54. Crini, G.: Twenty years of dextrin research: a tribute to professor Hans Pringsheim (1876–1940). J. Incl. Phenom. Macrocycl. Chem. 98, 11–27 (2020)

    Article  CAS  Google Scholar 

  55. Ryu, J.-J., Li, X., Lee, E.-S., Li, D., Lee, B.-H.: Slowly digestible property of highly branched α-limit dextrins produced by 4, 6-α-glucanotransferase from Streptococcus thermophilus evaluated in vitro and in vivo. Carbohydr. Polym. 275, 118685 (2022)

    Article  CAS  PubMed  Google Scholar 

  56. Sarifudin, A., Assiry, A.M.: Some physicochemical properties of dextrin produced by extrusion process. J. Saudi Soc. Agric. Sci. 13, 100–106 (2014)

    Google Scholar 

  57. Abdullah, Z.W., Dong, Y.: Biodegradable and water resistant poly(vinyl) alcohol (PVA)/starch (ST)/glycerol (GL)/halloysite nanotube (HNT) nanocomposite films for sustainable food packaging. Front. Mater. 6, 1–17 (2019)

    Article  Google Scholar 

  58. Salarbashi, D., Tafaghodi, M., Bazzaz, B.S.F., Mohammad Aboutorabzade, S., Fathi, M.: pH-sensitive soluble soybean polysaccharide/SiO2 incorporated with curcumin for intelligent packaging applications. Food Sci. Nutr. 9, 2169–2179 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., Dubois, P.: PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur. Polym. J. 49, 3471–3482 (2013)

    Article  CAS  Google Scholar 

  60. Ding, Y., Han, A., Zhou, H., Zhou, Q., Song, H., Chen, R., Guo, S.: Preparation of poly (ε-caprolactone) based composites through multistage biaxial-stretching extrusion with excellent oxygen and water vapor barrier performance. Compos. Part A Appl. Sci. Manuf. 149, 106494 (2021)

    Article  CAS  Google Scholar 

  61. Mallick, N., Soni, A.B., Pal, D.: Improving the mechanical, water vapor permeability, antimicrobial properties of corn-starch/poly vinyl alcohol film (PVA): effect of rice husk fiber (RH) & alovera gel (AV). IOP Conf. Ser. Mater. Sci. Eng. 798, 12002 (2020)

    Article  CAS  Google Scholar 

  62. Marcos, B., Sárraga, C., Castellari, M., Kappen, F., Schennink, G., Arnau, J.: Development of biodegradable films with antioxidant properties based on polyesters containing α-tocopherol and olive leaf extract for food packaging applications. Food Packag. Shelf Life 1, 140–150 (2014)

    Article  Google Scholar 

  63. Zamanian, M., Sadrnia, H., Khojastehpour, M., Hosseini, F., Thibault, J.: Effect of TiO2 nanoparticles on barrier and mechanical properties of PVA films. J. Membr. Sci. Res. 7, 67–73 (2021)

    CAS  Google Scholar 

  64. Gharoy Ahangar, E., Abbaspour-Fard, M.H., Shahtahmassebi, N., Khojastehpour, M., Maddahi, P.: Preparation and characterization of PVA/ZnO nanocomposite. J. food Process. Preserv. 39, 1442–1451 (2015)

    Article  CAS  Google Scholar 

  65. Goudarzi, V., Shahabi-Ghahfarrokhi, I., Babaei-Ghazvini, A.: Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: characterization. Int. J. Biol. Macromol. 95, 306–313 (2017)

    Article  CAS  PubMed  Google Scholar 

  66. Pedreiro, S., Figueirinha, A., Silva, A.S., Ramos, F.: Bioactive edible films and coatings based in gums and starch: phenolic enrichment and foods application. Coatings 11, 1393 (2021)

    Article  CAS  Google Scholar 

  67. Qian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B.B., Ye, X., Guo, M.: A review of active packaging in bakery products: applications and future trends. Trends Food Sci. Technol. 114, 459–471 (2021)

    Article  CAS  Google Scholar 

  68. Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., Gavara, R.: Advances in antioxidant active food packaging. Trends Food Sci. Technol. 35, 42–51 (2014)

    Article  CAS  Google Scholar 

  69. Nugraheni, M., Santoso, U.: Antioxidant activity and resistant starch content of C. tuberosus on different cooking method and its potential on glucose management in diabetic mice. Curr. Res. Nutr. Food Sci. J. 7, 182–189 (2019)

    Article  Google Scholar 

  70. Tongdeesoontorn, W., Mauer, L.J., Wongruong, S., Sriburi, P., Rachtanapun, P.: Physical and antioxidant properties of cassava starch–carboxymethyl cellulose incorporated with quercetin and TBHQ as active food packaging. Polymers (Basel) 12, 366 (2020)

    Article  CAS  Google Scholar 

  71. Mustafa, H., Ilyas, N., Akhtar, N., Raja, N.I., Zainab, T., Shah, T., Ahmad, A., Ahmad, P.: Biosynthesis and characterization of titanium dioxide nanoparticles and its effects along with calcium phosphate on physicochemical attributes of wheat under drought stress. Ecotoxicol. Environ. Saf. 223, 112519 (2021)

    Article  CAS  PubMed  Google Scholar 

  72. Sun, C., Wu, Z., Wang, Z., Zhang, H.: Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evidence-Based Complement. Altern. Med. 2015, 1–9 (2015)

    Google Scholar 

  73. Omran, B., Baek, K.-H.: Nanoantioxidants: pioneer types, advantages, limitations, and future insights. Molecules 26, 7031 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vasile, C., Pamfil, D., Râpă, M., Darie-Niţă, R.N., Mitelut, A.C., Popa, E.E., Popescu, P.A., Draghici, M.C., Popa, M.E.: Study of the soil burial degradation of some PLA/CS biocomposites. Compos. Part B Eng. 142, 251–262 (2018)

    Article  CAS  Google Scholar 

  75. Vasile, C.: Environmentally Degradable Polymeric Materials: Definition and Background. CRC Press, New York (2009)

    Google Scholar 

  76. Nguyen, D.M., Do, T.V.V., Grillet, A.-C., Thuc, H.H., Thuc, C.N.H.: Biodegradability of polymer film based on low density polyethylene and cassava starch. Int. Biodeterior. Biodegradation 115, 257–265 (2016)

    Article  CAS  Google Scholar 

  77. Korbag, I., Mohamed Saleh, S.: Studies on mechanical and biodegradability properties of PVA/lignin blend films. Int. J. Environ. Stud. 73, 18–24 (2016)

    Article  CAS  Google Scholar 

  78. Halima, N.: Ben: poly (vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv. 6, 39823–39832 (2016)

    Article  Google Scholar 

  79. Chiellini, E., Corti, A., D’Antone, S., Solaro, R.: Biodegradation of poly (vinyl alcohol) based materials. Prog. Polym. Sci. 28, 963–1014 (2003)

    Article  CAS  Google Scholar 

  80. Hossain, M., Afroz, S., Islam, M.U., Alam, A.K.M.M., Khan, R.A., Alam, A.: Synthesis and characterization of polyvinyl alcohol/water-hyacinth (Eichhornia crassipes) based hydrogel by applying gamma radiation. J. Polym. Res. 28, 1–12 (2021)

    Article  CAS  Google Scholar 

  81. Tsujiyama, S., Nitta, T., Maoka, T.: Biodegradation of polyvinyl alcohol by Flammulina velutipes in an unsubmerged culture. J. Biosci. Bioeng. 112, 58–62 (2011)

    Article  CAS  PubMed  Google Scholar 

  82. Mhlanga, N., Ray, S.S.: Characterisation and thermal properties of titanium dioxide nanoparticles-containing biodegradable polylactide composites synthesized by sol–gel method. J. Nanosci. Nanotechnol. 14, 4269–4277 (2014)

    Article  CAS  PubMed  Google Scholar 

  83. Hejri, Z., Seifkordi, A.A., Ahmadpour, A., Zebarjad, S.M., Maskooki, A.: Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles. Int. J. Miner. Metall. Mater. 20, 1001–1011 (2013)

    Article  CAS  Google Scholar 

  84. More, A.S., Sen, C., Das, M.: Development of starch-polyvinyl alcohol (PVA) biodegradable film: effect of cross-linking agent and antimicrobials on film characteristics. J. Appl. Packag. Res. 9, 1 (2017)

    Google Scholar 

  85. Ocampo, R.A., Echeverry-Rendón, M., DeAlba-Montero, I., Robledo, S., Ruiz, F., Echeverría Echeverría, F.: Effect of surface characteristics on the antibacterial properties of titanium dioxide nanotubes produced in aqueous electrolytes with carboxymethyl cellulose. J. Biomed. Mater. Res. Part A. 109, 104–121 (2021)

    Article  CAS  Google Scholar 

  86. Love, R.M.: Enterococcus faecalis–a mechanism for its role in endodontic failure. Int. Endod. J. 34, 399–405 (2001)

    Article  CAS  PubMed  Google Scholar 

  87. Gunputh, U.F., Le, H., Lawton, K., Besinis, A., Tredwin, C., Handy, R.D.: Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Nanotoxicology 14, 97–110 (2020)

    Article  CAS  PubMed  Google Scholar 

  88. Scuderi, V., Buccheri, M.A., Impellizzeri, G., Di Mauro, A., Rappazzo, G., Bergum, K., Svensson, B.G., Privitera, V.: Photocatalytic and antibacterial properties of titanium dioxide flat film. Mater. Sci. Semicond. Process. 42, 32–35 (2016)

    Article  CAS  Google Scholar 

  89. Bahrami, A., Fattahi, R.: Biodegradable carboxymethyl cellulose–polyvinyl alcohol composite incorporated with Glycyrrhiza Glabra L. essential oil: Physicochemical and antibacterial features. Food Sci. Nutr. 9, 4974–4985 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cano, A., Cháfer, M., Chiralt, A., González-Martínez, C.: Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packag. Shelf Life. 10, 16–24 (2016)

    Article  Google Scholar 

  91. Jayakumar, A., Heera, K.V., Sumi, T.S., Joseph, M., Mathew, S., Praveen, G., Nair, I.C., Radhakrishnan, E.K.: Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. Int. J. Biol. Macromol. 136, 395–403 (2019)

    Article  CAS  PubMed  Google Scholar 

  92. Sarwar, M.S., Niazi, M.B.K., Jahan, Z., Ahmad, T., Hussain, A.: Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr. Polym. 184, 453–464 (2018)

    Article  CAS  PubMed  Google Scholar 

  93. Yu, Z., Wang, W., Sun, L., Kong, F., Lin, M., Mustapha, A.: Preparation of cellulose nanofibril/titanium dioxide nanoparticle nanocomposites as fillers for PVA-based packaging and investigation into their intestinal toxicity. Int. J. Biol. Macromol. 156, 1174–1182 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E. N. Zare and F. Salimi acknowledge Damghan University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Nazarzadeh Zare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1100 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islamipour, Z., Zare, E.N., Salimi, F. et al. Biodegradable antibacterial and antioxidant nanocomposite films based on dextrin for bioactive food packaging. J Nanostruct Chem 12, 991–1006 (2022). https://doi.org/10.1007/s40097-022-00491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00491-4

Keywords

Navigation