Skip to main content
Log in

Distributions of Electromagnetic Fields and Forced Flow and Their Relevance to the Grain Refinement in Al–Si Alloy Under the Application of Pulsed Magneto-Oscillation

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Distributions of electromagnetic fields and induced forced flow inside a metal melt are crucial to understand the grain refinement of the metal driven by pulsed magneto-oscillation (PMO). In the present study, PMO-induced electromagnetic fields and forced flow in Ga–20wt%In–12wt%Sn liquid metal have been systematically investigated by performing numerical simulations and corresponding experimental measurements. The numerical simulations have been confirmed by magnetic and melt flow measurements. According to the simulated distribution of electromagnetic fields under the application of PMO, the strongest magnetic field, electric eddy current and Lorentz force with inward radial direction inside the melt are concentrated adjacent the sidewall of cylindrical melt at the cross section of middle height of coil. As a result, a global forced flow throughout the whole cylindrical column filled with Ga–20wt%In–12wt%Sn melt is initiated with a flow structure of two pair of symmetric vortex ring. The PMO-induced electromagnetic fields and forced flow in Al–7wt%Si melt have been numerically simulated. The contribution of electromagnetic fields and forced flow to the grain refinement of Al–7wt%Si alloy under the application of PMO is discussed. It indicates that the forced flow may play a key role in the grain size reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. R.G. Guan, D. Tie, Acta Metall. Sin. Engl. Lett. 30, 409 (2017)

    Article  CAS  Google Scholar 

  2. J.G. Jung, T.Y. Ahn, Y.H. Cho, S.H. Kim, J.M. Lee, Acta Mater. 144, 31 (2018)

    Article  CAS  Google Scholar 

  3. N. Li, L.M. Zhang, R. Zhang, P.F. Yin, Metals 9, 571 (2019)

    Article  CAS  Google Scholar 

  4. T. Ahmed, H.X. Jiang, W. Li, J.Z. Zhao, Acta Metall. Sin. Engl. Lett. 31, 842 (2018)

    Article  CAS  Google Scholar 

  5. D. Räbiger, Y.H. Zhang, V. Galindo, S. Franke, Acta Mater. 79, 327 (2014)

    Article  Google Scholar 

  6. Y.H. Zhang, Y.Y. Xu, C.Y. Ye, C. Sheng, G. Wang, X.C. Miao, C.J. Song, Q.J. Zhai, Sci. Rep. 8, 3242 (2018)

    Article  CAS  Google Scholar 

  7. Y.H. Zhang, X.C. Miao, Z.Y. Shen, Q.Y. Han, C.J. Song, Q.J. Zhai, Acta Mater. 97, 357 (2015)

    Article  CAS  Google Scholar 

  8. Y. Ruan, Q.Q. Gu, P. Lv, H.P. Wang, B.B. Wei, Mater. Des. 112, 239 (2016)

    Article  CAS  Google Scholar 

  9. H.P. Wang, P. Lv, X. Cai, B. Zhai, J.F. Zhao, B.B. Wei, Mater. Sci. Eng. A 772, 138660 (2020)

    Article  CAS  Google Scholar 

  10. Z.M. Yan, H. Liu, T.J. Li, X.Q. Zhang, Z.Q. Cao, X.L. Zhang, Mater. Des. 30, 1245 (2009)

    Article  CAS  Google Scholar 

  11. K.L. Zhang, Y.J. Li, Y.Y. Yang, J. Mater. Sci. Technol. 48, 9 (2020)

    Article  Google Scholar 

  12. W.C. Duan, S.Q. Yin, W.H. Liu, Z. Zhao, K. Hu, P. Wang, J.W. Cui, Z.Q. Zhang, J. Magnes. Alloy. In press (2020)

  13. L. Li, W.L. Liang, C.Y. Ban, Y.S. Suo, G.C. Lv, T. Liu, X.J. Wang, H. Zhang, J.Z. Cui, Mater. Charact. 163, 110274 (2020)

    Article  CAS  Google Scholar 

  14. B.T. Zi, Q.X. Ba, J.Z. Cui, Y.G. Bai, X.J. Na, Acta Phys. Sin. 49, 1010 (2000)

    Article  CAS  Google Scholar 

  15. Y.L. Gao, Q.S. Li, Y.Y. Gong, Q.J. Zhai, Mater. Lett. 61, 4011 (2007)

    Article  CAS  Google Scholar 

  16. X.L. Liao, Y.Y. Gong, R.X. Li, W.J. Chen, Q.J. Zhai, China Found. 4, 116 (2007)

    CAS  Google Scholar 

  17. B. Wang, Y.S. Yang, J.X. Zhou, W.H. Tong, Trans. Nonferrous Met. Soc. China 18, 536 (2008)

    Article  CAS  Google Scholar 

  18. Y.S. Yang, J.W. Fu, T.J. Luo, B. Wang, X.H. Feng, W.H. Tong, Y.J. Li, Chin. J. Nonferrous Met. 21, 2639 (2011)

    CAS  Google Scholar 

  19. Y.J. Li, W.Z. Tao, Y.S. Yang, J. Mater. Process. Technol. 212, 903 (2012)

    Article  CAS  Google Scholar 

  20. Y.Y. Gong, J. Luo, J.X. Jing, Z.Q. Xia, Q.J. Zhai, Mater. Sci. Eng. A 497, 147 (2008)

    Article  Google Scholar 

  21. Z.X. Yin, Y.Y. Gong, B. Li, Y.F. Cheng, D. Liang, Q.J. Zhai, J. Mater. Process. Technol. 212, 2629 (2012)

    Article  CAS  Google Scholar 

  22. I. Edry, A. Shoihet, S. Hayun, J. Mater. Process. Technol. 288, 116844 (2021)

    Article  CAS  Google Scholar 

  23. I. Edry, T. Mordechai, N. Frage, S. Hayun, Metall. Mater. Trans. A Phys. Metall. Mater. 47, 1261 (2016)

    Article  CAS  Google Scholar 

  24. J. Zhao, J. Yu, Q. Li, H.G. Zhong, C.J. Song, Q.J. Zhai, Mater. Sci. Technol. 31, 1589 (2015)

    Article  CAS  Google Scholar 

  25. J. Sun, C. Sheng, D.P. Wang, Y.H. Zhang, H.G. Zhong, Z.S. Xu, J.L. Li, Q.J. Zhai, J. Iron, Steel Res. Int. 25, 862 (2018)

    Article  Google Scholar 

  26. D. Liang, Z.Y. Liang, J. Sun, Q.J. Zhai, G. Wang, China Found. 12, 48 (2015)

    Google Scholar 

  27. I. Edry, N. Frage, S. Hayun, Mater. Lett. 182, 118 (2016)

    Article  CAS  Google Scholar 

  28. A.F. Kolesnichenko, A.D. Podoltsev, I.N. Kucheryavaya, ISIJ Int. 34, 715 (1994)

    Article  CAS  Google Scholar 

  29. Q.C. Le, S.J. Guo, Z.H. Zhao, J.Z. Cui, J. Mater. Process. Technol. 183, 194 (2007)

    Article  CAS  Google Scholar 

  30. J. Zhao, Y. Cheng, K. Han, X.Z. Zhang, Z.S. Xu, J. Mater. Process. Technol. 229, 286 (2016)

    Article  CAS  Google Scholar 

  31. J. Zhao, J.H. Yu, K. Han, H.G. Zhong, R.X. Li, Q.J. Zhai, Acta Metall. Sin. Engl. Lett. 31, 1334 (2018)

    Article  CAS  Google Scholar 

  32. K.L. Zhang, Y.J. Li, Y.S. Yang, Acta Metall. Sin. Engl. Lett. 33, 1442 (2020)

    Article  CAS  Google Scholar 

  33. Y.F. Teng, Y.J. Li, X.H. Feng, Y.S. Yang, Acta Metall. Sin. 51, 844 (2015)

    CAS  Google Scholar 

  34. G.F.V. Voort (ed.), Practical Applications of Quantitative Metallography: Grain Size Measurement (American Society for Testing and Materials, Philadelphia, 1984)

    Google Scholar 

  35. Y. Takeda, Nucl. Eng. Des. 126, 277 (1991)

    Article  Google Scholar 

  36. B.E. Launder, D.B. Spalding, Comput. Methods Appl. Mech. Eng. 3, 269 (1974)

    Article  Google Scholar 

  37. B. Wang, Y.S. Yang, J. Zhou, W. Tong, Mater. Sci. Technol. 27, 176 (2011)

    Article  Google Scholar 

  38. R.S. Qin, H.C. Yan, G.H. He, B.L. Zhou, Chin. J. Mater. Res. 9, 219 (1995)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2017YFB0304205) and the National Natural Science Foundation of China (Grant Nos. U1760204, 51704210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hu Zhang.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YY., Zhao, J., Ye, CY. et al. Distributions of Electromagnetic Fields and Forced Flow and Their Relevance to the Grain Refinement in Al–Si Alloy Under the Application of Pulsed Magneto-Oscillation. Acta Metall. Sin. (Engl. Lett.) 35, 254–274 (2022). https://doi.org/10.1007/s40195-021-01242-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01242-0

Keywords

Navigation