Skip to main content

Advertisement

Log in

Automated Violence Detection in Video Crowd Using Spider Monkey-Grasshopper Optimization Oriented Optimal Feature Selection and Deep Neural Network

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

There is an increasing demand for automated violence detection with a wide range of threats in society and less manpower to monitor them. Especially, detecting violence in crowded scenes is challenging because of the rapid movement, overlapping features due to occlusion, and cluttered backgrounds. This paper plans to implement the enhanced model for video violence detection with the aid of intelligent approaches. The proposed model covers different phases like (a) pre-processing, (b) feature extraction, (c) optimal feature selection, and (d) classification. Initially, the video frames are split, and the pre-processing of the frames is carried out by the Gaussian filter. Next, the feature extraction procedure is undergone, in which the Motion Boundary Scale Invariant Feature Transform (MoBSIFT), Histogram of oriented Gradients (HoG), and Motion Weber Local Descriptor (MoWLD) are used. Further, the optimal feature selection is adopted. The hybridization of two well-performing algorithms like Spider Monkey Optimization (SMO), and Grasshopper Optimisation Algorithm (GOA), namely Spider Monkey-Grasshopper Optimization algorithm (SM-GOA) is used for optimal feature selection with the intention of solving a multi-objective function. Then, the classification of violence and non-violence video frames is done by the Deep Neural Network (DNN), in which the training algorithm is enhanced by the same SM-GOA. The proposed SM-GOA-based DNN had achieved less False Positive Rate (FPR), False Negative Rate (FNR), and False Detection Rate (FDR) values compared to the existing methods proving less variance to the negative performance and thus has shown good overall performance on the violence flow dataset. Experimental results on diverse benchmark datasets have demonstrated the superior performance of the proposed approach over the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agrawal, V., Rastogi, R., & Tiwari, D. C. (2018). Spider monkey optimization: A survey. International Journal of System Assurance Engineering and Management, 9(4), 929–941.

    Google Scholar 

  • Baysal, S., & Duygulu, P. (2013). A line based pose representation for human action recognition. Signal Process Image Communication, 28(5), 458–471.

    Article  Google Scholar 

  • Boekhoudt, K., Matei, A., Aghaei, M. and Talavera, E., (2021). HR-Crime: Human-Related Anomaly Detection in Surveillance Videos. arXiv preprint arXiv.

  • Cao, Z and Zhu, M. (2010). An Efficient Video Similarity Search Algorithm, IEEE Transaction on Consumer Electronics, 56(2).

  • Chen, M.-y. and Hauptmann, A. (2009). MoSIFT : Recognizing human actions in surveillance videos, Technical Report CMU-CS-09–161, pp. 1–16.

  • Dai, Q., Wu, Z., Jiang, Y.G., Xue, X. and Tang, J. (2014). Violent Scenes Detection Using Deep Neural Networks, In MediaEval.

  • Dalal, N and Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection, in Computer Vision and Pattern Recognition, pp. 886–893.

  • Febin, I. P., Jayasree, K., & Joy, P. T. (2019). Violence detection in videos for an intelligent surveillance system using MoBSIFT and movement filtering algorithm. Pattern Analysis and Applications, 23, 611–623.

    Article  Google Scholar 

  • Gao, Y., Liu, H., Sun, X., Wang, C., & Liu, Y. (2016a). Violence detection using oriented violent flows. Image and Vision Computing, 48(49), 37–41.

    Article  Google Scholar 

  • Gao, Y., Liu, H., Sun, X., Wang, C., & Liu, Y. (2016b). Violence detection using oriented violent flows. Image and Vision Computing, 48, 37–41.

    Article  Google Scholar 

  • García-Gómez, J., Bautista-Durán, M., Gil-Pita, R., Mohino-Herranz, I., & Rosa-Zurera, M. (2016). Violence detection in real environments for smart cities. Ubiquitous computing and ambient intelligence (pp. 482–494). Springer.

    Chapter  Google Scholar 

  • Giannakopoulos, T., Makris, A., Kosmopoulos, D., Perantonis, S., & Theodoridis, S. (2010). Audio-visual fusion for detecting violent scenes in videos. Hellenic conference on artificial intelligence (pp. 91–100). Springer.

    Google Scholar 

  • Gkountakos, K., Ioannidis, K., Tsikrika, T., Vrochidis, S. and Kompatsiaris, I., (2020). A crowd analysis framework for detecting violence scenes. In Proceedings of the 2020 International Conference on Multimedia Retrieval, pp. 276–280.

  • Halder, R and Chatterjee, R. (2020). CNN-BiLSTM Model for Violence Detection in Smart Surveillance, SN Computer Science, 1(201).

  • Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.

    Article  Google Scholar 

  • Haque, Y.-Y.U., Islam, R., Hasan, J., & Sheikh, R. I. (2021). Negative imaginary theory-based proportional resonant controller for voltage control of three-phase islanded microgrid. Journal of Control, Automation and Electrical Systems, 32(1), 214–226.

    Article  Google Scholar 

  • Hockeyfight detection dataset, https://academictorrents.com/details/38d9ed996a5a75a039b84cf8a137be794e7cee89

  • Huang, C. S. (2018). A Survey on Content-Aware Video Analysis for Sports, IEEE Transaction on Circuits and Systems for Video Technology, 28(5).

  • Khatrouch, M., Gnouma, M., Ejbali, R. and Zaied, M., (2018). Deep learning architecture for recognition of abnormal activities. In Tenth International Conference on Machine Vision.

  • Kumar, K., Kumar, A. and Bahuguna, A., (2017). D-CAD: Deep and crowded anomaly detection, In Proceedings of the 7th International Conference on Computer and Communication Technology, pp. 100–105.

  • Kumar, K. (2018). EVS-DK: Event video skimming using deep keyframe. Journal of Visual Communication and Image Representation, 58, 345–352.

    Article  Google Scholar 

  • Kumar, K. (2021). Text query based summarized event searching interface system using deep learning over cloud. Multimedia Tools and Applications, 80(7), 11079–11094.

    Article  Google Scholar 

  • Kumar, K., & Shrimankar, D. D. (2018). Deep event learning boost-up approach: Delta. Multimedia Tools and Applications, 77(20), 26635–26655.

    Article  Google Scholar 

  • Kumar, K., Shrimankar, D. D., & Singh, N. (2018). Eratosthenes sieve based key-frame extraction technique for event summarization in videos. Multimedia Tools and Applications, 77(6), 7383–7404.

    Article  Google Scholar 

  • Kumar, K., Shrimankar, D. D., & Singh, N. (2019). Key-lectures: Keyframes extraction in video lectures. Machine Intelligence and Signal Analysis (pp. 453–459). Springer.

    Chapter  Google Scholar 

  • Li, T., Chang, H., Wang, M., Ni, B., & Hong, R. (2015). Crowded scene analysis : A survey. Transactions on Circuits and Systems for Video Technology, 25(3), 367–386.

    Article  Google Scholar 

  • Liang, Y., Hany, F., Tapio, S., Esko, A. (2014). Physical violence detection for preventing school bullying, Advances in Artificial Intelligence, pp. 1–9.

  • Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11–26.

    Article  Google Scholar 

  • Mabrouk, A. B., & Zagrouba, E. (2017). Spatio-temporal feature using optical flow based distribution for violence detection. Pattern Recognition Letter, 92, 62–67.

    Article  Google Scholar 

  • Moore, B. E., Ali, S., Mehran, R., & Shah, M. (2011). Visual crowd surveillance through a hydrodynamics lens. Communications of the ACM, 54, 64–73.

    Article  Google Scholar 

  • Nievas, E. B., Suarez, O. D., Garc´ıa, G. B and Sukthankar, R. (2011). Violence detection in video using computer vision techniques, Computer Analysis of Images and Patterns, 332–339.

  • Nievas E. B., Suarez O. D., García G. B., Sukthankar, R. (2011). Violence detection in video using computer vision techniques, In: Real P, Diaz-Pernil D, Molina-Abril H, Berciano A, KropatschW(eds) Computer analysis of images and patterns, Springer, Berlin, 6855, 332–339.

  • Pujol, F. A., Mora, H., & Pertegal, M. L. (2020). A soft computing approach to violence detection in social media for smart cities. Soft Computing, 24, 11007–11017.

    Article  Google Scholar 

  • Ribeiro, P. C., Audigier, R., & Pham, Q. C. (2016). Rimoc, a feature to discriminate unstructured motions: Application to violence detection for video-surveillance. Computer Vision and Image Understanding, 144, 121–143.

    Article  Google Scholar 

  • Samuel, D. J. R., Fenil, E., Manogaran, G., Vivekananda, G. N., Thanjaivadivel, M., Jeeva, S., & Ahilan, A. (2019). Real time violence detection framework for football stadium comprising of big data analysis and deep learning through bidirectional LSTM”. Computer Networks, 151, 191–200.

    Article  Google Scholar 

  • Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory and application. Advances in Engineering Software, 105, 30–47.

    Article  Google Scholar 

  • Senst, T., Eiselein, V., Kuhn, A., & Sikora, T. (2017). Crowd violence detection using global motion-compensated lagrangian features and scale-sensitive video-level representation. IEEE Transactions on Information Forensics and Security, 12(12), 2945–2956.

    Article  Google Scholar 

  • Sharma, M., & Baghel, R. (2020). Video surveillance for violence detection using deep learning. Advances in data science and management (pp. 411–420). Springer.

    Chapter  Google Scholar 

  • Sharma, S., Kumar, P., & Kumar, K. (2017). LEXER: Lexicon based emotion analyzer. International Conference on Pattern Recognition and Machine Intelligence (pp. 373–379). Springer.

    Chapter  Google Scholar 

  • Shende, D.K. and Sonavane, S.S., (2020). CrowWhale-ETR: CrowWhale optimization algorithm for energy and trust aware multicast routing in WSN for IoT applications. Wireless Networks, pp. 1–19.

  • Shu, C., Ding, X., & Fang, C. (2011). Histogram of the oriented gradient for face recognition. Tsinghua Science and Technology, 16(2), 216–224.

    Article  Google Scholar 

  • Sivarajasingam, V., Shepherd, J. P., & Matthews, K. (2003). Effect of urban closed circuit television on assault injury and violence detection. Injury Prevention, 9(4), 312–316.

    Article  Google Scholar 

  • Song, W., Zhang, D., Zhao, X., Yu, J., Zheng, R., & Wang, A. (2019). A Novel Violent Video Detection Scheme Based On Modified 3D Convolutional Neural Networks. IEEE Access, 7, 39172–39179.

    Article  Google Scholar 

  • Ullah, F. U. M., Ullah, A., Muhammad, K., Haq, I. U., & Baik, S. W. (2019). Violence detection using spatiotemporal features with 3D convolutional neural network. Sensors, 19(11), 2472.

    Article  Google Scholar 

  • Vedik, B., Kumar, R., Deshmukh, R., Verma, S., & Shiva, C. K. (2021). Renewable energy-based load frequency stabilization of interconnected power systems using quasi-oppositional dragonfly algorithm. Journal of Control, Automation and Electrical Systems, 32(1), 227–243.

    Article  Google Scholar 

  • Violent flow dataset, "https://www.openu.ac.il/home/hassner/data/violentflows/".

  • Zhang, T., Jia, W., He, X., & Yang, J. (2017a). Discriminative dictionary learning with motion weber local descriptor for violence detection. IEEE Transactions on Circuits and Systems for Video Technology, 27(3), 696–709.

    Article  Google Scholar 

  • Zhang, T., Jia, W., Yang, B., Yang, J., He, X., & Zheng, Z. (2017b). MoWLD: A robust motion image descriptor for violence detection. Multimedia Tools and Applications, 76, 1419–1438.

    Article  Google Scholar 

  • Zhang, T., Yang, Z., Jia, W., Yang, B., Yang, J., & He, X. (2016). A new method for violence detection in surveillance scenes. Multimedia Tools Application, 75, 7327–7349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuja Jana Naik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, A.J., Gopalakrishna, M.T. Automated Violence Detection in Video Crowd Using Spider Monkey-Grasshopper Optimization Oriented Optimal Feature Selection and Deep Neural Network. J Control Autom Electr Syst 33, 858–880 (2022). https://doi.org/10.1007/s40313-021-00868-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-021-00868-w

Keywords

Navigation