Skip to main content
Log in

The anisotropic elasto-plastic analysis using a natural neighbour RPIM version

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this work, the natural neighbour radial point interpolation method (NNRPIM), an advanced discretization meshless technique, is used to study several solid mechanics benchmark examples considering an elasto-plastic approach. The NNRPIM combines the radial point interpolators (RPI) with the natural neighbour geometric concept. The nodal connectivity and the background integration mesh depend entirely on the nodal discretization and are both achieved using mathematic concepts, such as the Voronoï diagram and the Delaunay tessellation. The obtained interpolation functions, used in the Galerkin weak form, are constructed with the RPI and possess the delta Kronecker property, which facilitates the imposition of the natural and essential boundary conditions. Due to the organic procedure employed to impose the nodal connectivity, the obtained displacement and the stress field are smooth and accurate. Since the scope of this work is to extend and validate the NNRPIM in the anisotropic elasto-plastic analysis, it is used as nonlinear solution algorithm, the modified Newton–Raphson initial stiffness method. The efficient “backward-Euler” procedure is considered to return the stress to the Hill anisotropic yield surface. The elasto-plastic algorithm of solution is described. Several benchmark two-dimensional problems are solved, considering anisotropic elasto-plastic materials with anisotropic hardening, and the obtained solutions are compared with finite-element solutions, showing that the meshless approach developed is efficient and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813

    Article  MathSciNet  MATH  Google Scholar 

  2. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1–4):3–47

    Article  MATH  Google Scholar 

  3. Belinha J (2014) Meshless methods in biomechanics—bone tissue remodelling analysis. Lecture notes in computational vision and biomechanics, 16th edn. Springer, Netherlands

    MATH  Google Scholar 

  4. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  5. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1–4):375–408

    Article  MathSciNet  MATH  Google Scholar 

  6. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318

    Article  MATH  Google Scholar 

  7. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158

    Article  MathSciNet  MATH  Google Scholar 

  8. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679

    Article  MathSciNet  MATH  Google Scholar 

  10. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MathSciNet  MATH  Google Scholar 

  11. Dinis LMJS, Natal Jorge RM, Belinha J (2007) Analysis of 3D solids using the natural neighbour radial point interpolation method. Comput Methods Appl Mech Eng 196(13–16):2009–2028

    Article  MATH  Google Scholar 

  12. Liew KM, Zhao X, Ferreira AJM (2011) A review of meshless methods for laminated and functionally graded plates and shells. Compos Struct 93(8):2031–2041

    Article  Google Scholar 

  13. Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Methods Eng 50(4):937–951

    Article  MATH  Google Scholar 

  14. Wang JG, Liu GR, Wu YG (2001) A point interpolation method for simulating dissipation process of consolidation. Comput Methods Appl Mech Eng 190(45):5907–5922

    Article  MATH  Google Scholar 

  15. Wang JG, Liu GR (2002) A point interpolation meshless method based on radial basis functions. Int J. Numer Methods Eng 54(11):1623–1648

    Article  MATH  Google Scholar 

  16. Wang JG, Liu GR (2002) On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput Methods Appl Mech Eng 191(23–24):2611–2630

    Article  MathSciNet  MATH  Google Scholar 

  17. Braun J, Sambridge M (1995) A numerical method for solving partial differential equations on highly irregular evolving grids. Nature 376(6542):655–660

    Article  Google Scholar 

  18. Sukumar N, Moran B, Yu Semenov A, Belikov VV (2001) Natural neighbour Galerkin methods. Int J Numer Methods Eng 50(1):1–27

    Article  MathSciNet  MATH  Google Scholar 

  19. Idelsohn SR, Oñate E, Calvo N, Del Pin F (2003) The meshless finite element method. Int J Numer Methods Eng 58(6):893–912

    Article  MathSciNet  MATH  Google Scholar 

  20. Dinis LMJS, Natal Jorge RM, Belinha J (2008) Analysis of plates and laminates using the natural neighbour radial point interpolation method. Eng Anal Bound Elem 32(3):267–279

    Article  MATH  Google Scholar 

  21. Moreira S, Belinha J, Dinis LMJS, Natal Jorge RM (2014) Análise de vigas laminadas utilizando o natural neighbour radial point interpolation method. Rev Int Métodos Numéricos para Cálculo y Diseño en Ing 30(2):108–120

    MathSciNet  Google Scholar 

  22. Belinha J, Dinis LMJS, Natal Jorge RM (2013) The natural radial element method. Int J Numer Methods Eng 93(12):1286–1313

    Article  MathSciNet  MATH  Google Scholar 

  23. Belinha J, Dinis LMJS, Natal Jorge RM (2013) Analysis of thick plates by the natural radial element method. Int J Mech Sci 76:33–48

    Article  MATH  Google Scholar 

  24. Belinha J, Dinis LMJS, Jorge RMN (2013) Composite laminated plate analysis using the natural radial element method. Compos Struct 103:50–67

    Article  MATH  Google Scholar 

  25. Voronoï G (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les paralléllo èdres primitifs”, J. fur die reine und. Angew Math 134:198–287

    MathSciNet  MATH  Google Scholar 

  26. Delaunay B (1934) Sur la sphère vide. A la mémoire de Georges Voronoï. Bull Acad Sci USSR 6:793–800

    MATH  Google Scholar 

  27. Liu GR (2009) Mesh free methods, moving beyond the finite element method, 2nd edn. CRC Press LLC, Boca Raton

    Google Scholar 

  28. Belytschko T, Lu YY, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51(2):295–315

    Article  Google Scholar 

  29. Belytschko T, Tabbara M (1996) Dynamic fracture using element-free Galerkin methods. Int J Numer Methods Eng 39(6):923–938

    Article  MATH  Google Scholar 

  30. Xu Y, Saigal S (1998) An element free Galerkin formulation for stable crack growth in an elastic solid. Comput Methods Appl Mech Eng 154(3–4):331–343

    Article  MATH  Google Scholar 

  31. Kargarnovin MH, Toussi HE, Fariborz SJ (2004) Elasto-plastic element-free Galerkin method. Comput Mech 33(3):206–214

    Article  MATH  Google Scholar 

  32. Pamin J, Askes H, de Borst R (2003) Two gradient plasticity theories discretized with the element-free Galerkin method. Comput Methods Appl Mech Eng 192(20–21):2377–2403

    Article  MATH  Google Scholar 

  33. Barry W, Saigal S (1999) A three-dimensional element-free Galerkin elastic and elastoplastic formulation. Int J Numer Methods Eng 46(5):671–693

    Article  MATH  Google Scholar 

  34. Krysl P, Belytschko T (1999) The Element Free Galerkin method for dynamic propagation of arbitrary 3-D cracks. Int. J. Numer. Methods Eng. 44(6):767–800

    Article  MATH  Google Scholar 

  35. Belinha J, Dinis LMJS (2006) Elasto-plastic analysis of plates by the element free Galerkin method. Eng Comput 23(5):525–551

    Article  MATH  Google Scholar 

  36. Belinha J, Dinis LMJS (2007) Nonlinear analysis of plates and laminates using the element free Galerkin method. Compos Struct 78(3):337–350

    Article  Google Scholar 

  37. Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing Kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227

    Article  MathSciNet  MATH  Google Scholar 

  38. Ma J, Xin XJ, Krishnaswami P (2008) Elastoplastic meshless integral method. Comput Methods Appl Mech Eng 197(51–52):4774–4788

    Article  MATH  Google Scholar 

  39. Xia P, Long SY, Wei KX (2011) An analysis for the elasto-plastic problem of the moderately thick plate using the meshless local Petrov–Galerkin method. Eng Anal Bound Elem 35(7):908–914

    Article  MathSciNet  MATH  Google Scholar 

  40. Dai KY, Liu GR, Han X, Li Y (2006) Inelastic analysis of 2D solids using a weak-form RPIM based on deformation theory. Comput Methods Appl Mech Eng 195(33–36):4179–4193

    Article  MATH  Google Scholar 

  41. Zhu HH, Miao YB, Cai YC (2006) Meshless natural neighbour method and its application in elasto-plastic problems. In: Liu GR, Tan VBC, Han X (eds) Computational methods. Springer, Dordrecht, pp 1465–1475

    Chapter  Google Scholar 

  42. Ma Y, Dong Y, Zhou Y, Feng W (2014) The incremental hybrid natural element method for elastoplasticity problems. Math Probl Eng 2014(Article ID 979216):9

    MathSciNet  Google Scholar 

  43. Crisfield MA (1991) Non-linear finite element analysis of solids and structures: M. A. Crisfield: 9780471970590: Amazon.com: Books. Wiley, New York. Available http://www.amazon.com/Non-Linear-Finite-Element-Analysis-Structures/dp/047197059X. Accessed 05 May 2014 (Online)

  44. Sibson R (2008) A vector identity for the Dirichlet tessellation. Math Proc Cambridge Philos Soc 87(01):151–155

    Article  MathSciNet  MATH  Google Scholar 

  45. Dinis LMJS, Natal Jorge RM, Belinha J (2011) A natural neighbour meshless method with a 3D shell-like approach in the dynamic analysis of thin 3D structures. Thin-Walled Struct 49(1):185–196

    Article  Google Scholar 

  46. Belinha J, Natal Jorge RM, Dinis LMJS (2012) Bone tissue remodelling analysis considering a radial point interpolator meshless method. Eng Anal Bound Elem 36(11):1660–1670

    Article  MathSciNet  MATH  Google Scholar 

  47. Dinis LMJS, Jorge RMN, Belinha J (2009) The natural neighbour radial point interpolation method: dynamic applications. Eng Comput 26(8):911–949

    Article  MATH  Google Scholar 

  48. Dinis LMJS, Natal Jorge RM, Belinha J (2011) Static and dynamic analysis of laminated plates based on an unconstrained third order theory and using a radial point interpolator meshless method. Comput Struct 89(19–20):1771–1784

    Article  Google Scholar 

  49. Azevedo JMC, Belinha J, Dinis LMJS, Natal RM (2015) Crack path prediction using the natural neighbour radial point interpolation method. Eng Anal Bound Elem 59:144–158

    Article  MathSciNet  Google Scholar 

  50. Belinha J, Azevedo JMC, Dinis LMJS, Natal Jorge RM (2016) The natural neighbor radial point interpolation method extended to the crack growth simulation. Int J Appl Mech 08(01):1650006

    Article  Google Scholar 

  51. Hardy RL (1990) Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988. Comput Math Appl 19(8–9):163–208

    Article  MathSciNet  MATH  Google Scholar 

  52. Owen DRJ, Hinton E (1980) Finite elements in plasticity: theory and practice. Pineridge Press, Swansea

    MATH  Google Scholar 

  53. Timoshenko S (1934) Theory of Elasticity. McGraw-Hill, New York

    MATH  Google Scholar 

  54. Hill R (1998) The mathematical theory of plasticity. The Oxford engineering science series, vol 11. Oxford University Press, New York

    Google Scholar 

  55. Owen DRJ, Figueiras JA (1983) Elasto-plastic analysis of anisotropic plates and shells by the semiloof element. Int J Numer Methods Eng 19(4):521–539

    Article  MATH  Google Scholar 

  56. Valliappan S, Boonlaulohr P, Lee IK (1976) Non-linear analysis for anisotropic materials. Int J Numer Methods Eng 10(3):597–606

    Article  Google Scholar 

  57. Owen DRJ, Figueiras JA (1983) Anisotropic elasto-plastic finite element analysis of thick and thin plates and shells. Int J Numer Methods Eng 19(4):541–566

    Article  MATH  Google Scholar 

  58. Belinha J, Dinis LMJS (2006) Elasto-plastic analysis of anisotropic problems considering the element free Galerkin method. Rev Int Métodos Numéricos para Cálculo y Diseño en Ing 22:87–117

    MATH  Google Scholar 

  59. Brünig M (1995) Nonlinear analysis and elastic-plastic behavior of anisotropic structures. Finite Elem Anal Des 20(3):155–177

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors truly acknowledge the funding provided by Ministério da Educação e Ciência,—Fundação para a Ciência e a Tecnologia (Portugal), under Grant SFRH/BPD/75072/2010 and SFRH/BPD/111020/2015, and by project funding UID/EMS/50022/2013 (funding provided by the inter-institutional projects from LAETA). Additionally, the authors gratefully acknowledge the funding of Project NORTE-01-0145-FEDER-000022—SciTech—Science and Technology for Competitive and Sustainable Industries, co-financed by Programa Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Belinha.

Additional information

Techniccal Editor: Eduardo Alberto Fancello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, S.F., Belinha, J., Dinis, L.M.J.S. et al. The anisotropic elasto-plastic analysis using a natural neighbour RPIM version. J Braz. Soc. Mech. Sci. Eng. 39, 1773–1795 (2017). https://doi.org/10.1007/s40430-016-0603-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0603-x

Keywords

Navigation