Skip to main content
Log in

An efficient finite element formulation for bending, free vibration and stability analysis of Timoshenko beams

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a new three-node element is proposed for analysis of beams with shear deformation effect. In each node of this element, there exist translation and rotation degrees of freedom. The element’s formulation is based on the first-order shear deformation theory. For this aim, the displacement field of the element is approximated by a fifth-order polynomial. The shear strain is varied as a quadratic function within the element. It is worth noting that the quadratic function can be used for axial displacement field as well. By employing curvature and shear strain relations of Timoshenko beam theory, the exact and explicit shape functions of the displacement fields are obtained. By utilizing these shape functions, the stiffness matrix and the geometric stiffness matrix of the element are calculated. The mass matrices of the proposed element are derived from kinetic energy relation of the beam. Finally, several numerical tests are performed to assess the robustness of the developed element. The results of the numerical tests prove the absence of the shear locking and demonstrate high accuracy and efficiency of the proposed element for bending, free vibration and stability analysis of Timoshenko beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thomas D, Wilson J, Wilson R (1973) Timoshenko beam finite elements. J Sound Vib 31:315–330

    Article  Google Scholar 

  2. Nickel R, Secor G (1972) Convergence of consistently derived Timoshenko beam finite elements. Int J Numer Meth Eng 5:243–252

    Article  Google Scholar 

  3. Reddy J (1997) On locking-free shear deformable beam finite elements. Comput Methods Appl Mech Eng 149:113–132

    Article  Google Scholar 

  4. Friedman Z, Kosmatka JB (1993) An improved two-node Timoshenko beam finite element. Comput Struct 47:473–481

    Article  Google Scholar 

  5. Kapur KK (1966) Vibrations of a Timoshenko beam, using finite-element approach. J Acoust Soc Am 40:1058–1063

    Article  Google Scholar 

  6. Lees A, Thomas D (1982) Unified Timoshenko beam finite element. J Sound Vib 80:355–366

    Article  Google Scholar 

  7. Lees A, Thomas D (1985) Modal hierarchical Timoshenko beam finite elements. J Sound Vib 99:455–461

    Article  MathSciNet  Google Scholar 

  8. Tessler A, Dong S (1981) On a hierarchy of conforming Timoshenko beam elements. Comput Struct 14:335–344

    Article  Google Scholar 

  9. Falsone G, Settineri D (2011) An Euler–Bernoulli-like finite element method for Timoshenko beams. Mech Res Commun 38:12–16

    Article  Google Scholar 

  10. Bouclier R, Elguedj T, Combescure A (2012) Locking free isogeometric formulations of curved thick beams. Comput Methods Appl Mech Eng 245:144–162

    Article  MathSciNet  Google Scholar 

  11. Cazzani A, Malagù M, Turco E (2016) Isogeometric analysis of plane-curved beams. Math Mech Solids 21:562–577

    Article  MathSciNet  Google Scholar 

  12. Lepe F, Mora D, Rodríguez R (2014) Locking-free finite element method for a bending moment formulation of Timoshenko beams. Comput Math Appl 68:118–131

    Article  MathSciNet  Google Scholar 

  13. Caillerie D, Kotronis P, Cybulski R (2015) A Timoshenko finite element straight beam with internal degrees of freedom. Int J Numer Anal Meth Geomech 39:1753–1773

    Article  Google Scholar 

  14. Khajavi R (2016) A novel stiffness/flexibility-based method for Euler–Bernoulli/Timoshenko beams with multiple discontinuities and singularities. Appl Math Model 40(17–18):7627–7655

    Article  MathSciNet  Google Scholar 

  15. Dawe D (1978) A finite element for the vibration analysis of Timoshenko beams. J Sound Vib 60:11–20

    Article  Google Scholar 

  16. Lee J, Schultz W (2004) Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method. J Sound Vib 269:609–621

    Article  Google Scholar 

  17. Kocatürk T, Şimşek M (2005) Free vibration analysis of Timoshenko beams under various boundary conditions. Sigma 1:30–44

    Google Scholar 

  18. Ferreira A (2005) Free vibration analysis of Timoshenko beams and Mindlin plates by radial basis functions. Int J Comput Methods 2:15–31

    Article  Google Scholar 

  19. Ferreira A, Fasshauer G (2006) Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method. Comput Methods Appl Mech Eng 196:134–146

    Article  Google Scholar 

  20. Xu S, Wang X (2011) Free vibration analyses of Timoshenko beams with free edges by using the discrete singular convolution. Adv Eng Softw 42:797–806

    Article  Google Scholar 

  21. Lee SJ, Park KS (2013) Vibrations of Timoshenko beams with isogeometric approach. Appl Math Model 37:9174–9190

    Article  MathSciNet  Google Scholar 

  22. Moallemi-Oreh A, Karkon M (2013) Finite element formulation for stability and free vibration analysis of Timoshenko beam. Adv Acoust Vib 2013:841215. https://doi.org/10.1155/2013/841215

    Article  Google Scholar 

  23. Hsu YS (2016) Enriched finite element methods for Timoshenko beam free vibration analysis. Appl Math Model 40:7012–7033

    Article  MathSciNet  Google Scholar 

  24. Kosmatka J (1995) An improved two-node finite element for stability and natural frequencies of axial-loaded Timoshenko beams. Comput Struct 57:141–149

    Article  Google Scholar 

  25. Matsunaga H (1996) Buckling instabilities of thick elastic beams subjected to axial stresses. Comput Struct 59:859–868

    Article  Google Scholar 

  26. Więckowski Z, Golubiewski M (2007) Improvement in accuracy of the finite element method in analysis of stability of Euler–Bernoulli and Timoshenko beams. Thin Walled Struct 45:950–954

    Article  Google Scholar 

  27. Carrera E, Pagani A, Banerjee JR (2016) Linearized buckling analysis of isotropic and composite beam-columns by Carrera Unified Formulation and dynamic stiffness method. Mech Adv Mater Struct 23:1092–1103

    Article  Google Scholar 

  28. Coulter BA, Miller RE (1986) Vibration and buckling of beam-columns subjected to non-uniform axial loads. Int J Numer Meth Eng 23:1739–1755

    Article  Google Scholar 

  29. Augarde CE (1998) Generation of shape functions for straight beam elements. Comput Struct 68:555–560

    Article  Google Scholar 

  30. Modarakar Haghighi A, Zakeri M, Attarnejad R (2015) 3-node basic displacement functions in analysis of non-prismatic beams. J Comput Appl Mech 46:77–91

    Google Scholar 

  31. Ferreira AJ (2008) MATLAB codes for finite element analysis: solids and structures, vol 157. Springer, Berlin

    Google Scholar 

  32. Bažant ZP, Cedolin L (2010) Stability of structures: elastic, inelastic, fracture and damage theories. World Scientific, Singapore

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Karkon.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça.

Appendix

Appendix

The nonzero entries of the stiffness matrix \(\left[ {K^{e} } \right]\) is:

$$\begin{aligned} k_{11} & = 4\text{EI}\left( {401587200\lambda^{3} + 19440000\lambda^{2} + 292140\lambda + 1273} \right) \\ k_{12} & = 2\text{EI}l\left( { - 1857945600\lambda^{4} + 76723200\lambda^{3} + 6814080\lambda^{2} + 119340\lambda + 569} \right) \\ k_{13} & = - 3584\text{EI}\left( {60\lambda + 1} \right)^{3} \\ k_{14} & = 1920\text{EI}l\left( {48\lambda + 1} \right)^{2} \left( {1680\lambda^{2} + 180\lambda + 1} \right) \\ k_{15} & = - 4\text{EI}\left( {208051200\lambda^{3} + 9763200\lambda^{2} + 130860\lambda + 377} \right) \\ k_{16} & = 2\text{EI}l\left( { - 1857945600\lambda^{4} - 20044800\lambda^{3} + 1975680\lambda^{2} + 38700\lambda + 121} \right) \\ k_{22} & = 4\text{EI}l^{2} \left( {3715891200\lambda^{5} + 6220800\lambda^{4} + 15949440\lambda^{3} + 967980\lambda^{2} + 16605\lambda + 83} \right) \\ k_{23} & = - 896\text{EI}l\left( {60\lambda + 1} \right)^{3} \\ k_{24} & = 320\text{EI}l^{2} \left( {48\lambda + 1} \right)^{2} \left( { - 40320\lambda^{3} - 2640\lambda^{2} + 156\lambda + 1} \right) \\ k_{26} & = 2\text{EI}l^{2} \left( {7431782400\lambda^{5} - 277862400\lambda^{4} - 14065920\lambda^{3} + 116520\lambda^{2} + 5490\lambda + 19} \right) \\ k_{33} & = 7168\text{EI}\left( {60\lambda + 1} \right)^{3} \\ k_{44} & = 1280\text{EI}l^{2} \left( {48\lambda + 1} \right)^{2} \left( {20160\lambda^{3} + 3840\lambda^{2} + 192\lambda + 1} \right). \\ \end{aligned}$$
(45)

The nonzero entries of the translation mass matrix \(\left[ {M_{1}^{e} } \right]\) is:

$$\begin{aligned} m_{11} & = l\left( {2189721600\lambda^{4} + 179055360\lambda^{3} + 5828688\lambda^{2} + 88554\lambda + 523} \right) \\ m_{12} & = \frac{3}{2}l^{2} \left( { - 729907200\lambda^{5} + 36495360\lambda^{4} + 2871360\lambda^{3} + 93060\lambda^{2} + 2061\lambda + 19} \right) \\ m_{13} & = 44l\left( {60\lambda + 1} \right)^{2} \left( {12096\lambda^{2} + 540\lambda + 5} \right) \\ m_{14} & = - 40l^{2} \left( {48\lambda + 1} \right)^{2} \left( { - 23760\lambda^{3} - 792\lambda^{2} + 177\lambda + 1} \right) \\ m_{15} & = \frac{1}{2}l\left( {1368576000\lambda^{4} + 141419520\lambda^{3} + 4440816\lambda^{2} + 49668\lambda + 131} \right) \\ m_{16} & = - \frac{1}{4}l^{2} \left( {4379443200\lambda^{5} - 218972160\lambda^{4} - 120960\lambda^{3} + 526680\lambda^{2} + 9546\lambda + 29} \right) \\ m_{17} & = l^{3} \left( {35035545600\lambda^{6} + 291962880\lambda^{5} - 11335680\lambda^{4} + 193536\lambda^{3} + 6774\lambda^{2} + 129\lambda + 2} \right) \\ m_{18} & = 22l^{2} \left( {60\lambda + 1} \right)^{2} \left( {72\lambda + 1} \right) \\ m_{19} & = - 3l^{3} \left( {48\lambda + 1} \right)^{2} \left( {10137600\lambda^{4} + 929280\lambda^{3} - 9440\lambda^{2} + 76\lambda + 1} \right) \\ m_{110} & = \frac{3}{4}l^{3} \left( {46714060800\lambda^{6} + 389283840\lambda^{5} - 15114240\lambda^{4} + 258048\lambda^{3} - 4168\lambda^{2} - 268\lambda - 1} \right) \\ m_{111} & = 1408l\left( {60\lambda + 1} \right)^{2} \left( {3024\lambda^{2} + 108\lambda + 1} \right) \\ m_{112} & = 32l^{3} \left( {48\lambda + 1} \right)^{2} \left( {1900800\lambda^{4} + 411840\lambda^{3} + 24960\lambda^{2} + 288\lambda + 1} \right). \\ \end{aligned}$$
(46)

The nonzero entries of the rotary mass matrix \(\left[ {M_{2}^{e} } \right]\) is:

$$\begin{aligned} m_{21} &= \frac{12}{l}\left( {403200\lambda^{2} + 14880\lambda + 139} \right) \hfill \\ m_{22} & = - \left( {55987200\lambda^{3} + 1969920\lambda^{2} + 15444\lambda - 39} \right) \hfill \\ m_{23} &= - \frac{1536}{l}\left( {60\lambda + 1} \right)^{2} \hfill \\ m_{24} &= - 240\left( {48\lambda + 1} \right)^{2} \left( {60\lambda - 1} \right) \hfill \\ m_{25} &= \frac{12}{l}\left( {57600\lambda^{2} + 480\lambda - 11} \right) \hfill \\ m_{26} &= - \left( { - 2073600\lambda^{3} + 207360\lambda^{2} + 5076\lambda + 9} \right) \hfill \\ m_{27} &= 4l\left( {219801600\lambda^{4} + 9711360\lambda^{3} + 153144\lambda^{2} + 1263\lambda + 7} \right) \hfill \\ m_{28} &= 48\left( {60\lambda + 1} \right)^{2} \left( {336\lambda - 1} \right) \hfill \\ m_{29} &= - 8l\left( {48\lambda + 1} \right)^{2} \left( { - 18000\lambda^{2} + 600\lambda + 1} \right) \hfill \\ m_{210} &= l\left( {8294400\lambda^{4} + 2557440\lambda^{3} + 9936\lambda^{2} - 924\lambda - 5} \right) \hfill \\ m_{211} &= \frac{3072}{l}\left( {60\lambda + 1} \right)^{2} \hfill \\ m_{212} &= 256l\left( {48\lambda + 1} \right)^{2} \left( {3600\lambda^{2} + 60\lambda + 1} \right). \hfill \\ \end{aligned}$$
(47)

The nonzero entries of the geometric stiffness matrix \(\left[ {K_{g} } \right]\) is:

$$\begin{aligned} k_{g1} & = \frac{12}{l}\left( {2409523200\lambda^{4} + 137721600\lambda^{3} + 2953800\lambda^{2} + 30156\lambda + 139} \right) \\ k_{g2} & = - 3\left( {22295347200\lambda^{5} + 597196800\lambda^{4} + 2695680\lambda^{3} + 80640\lambda^{2} + 1152\lambda - 13} \right) \\ k_{g3} & = - \frac{1536}{l}\left( {60\lambda + 1} \right)^{2} \left( {2520\lambda^{2} + 84\lambda + 1} \right) \\ k_{g4} & = 240\left( {48\lambda + 1} \right)^{2} \left( {241920\lambda^{3} + 26640\lambda^{2} + 228\lambda + 1} \right) \\ k_{g5} & = - \frac{12}{l}\left( {1248307200\lambda^{4} + 60307200\lambda^{3} + 880200\lambda^{2} + 4044\lambda + 11} \right) \\ k_{g6} & = - 9\left( {7431782400\lambda^{5} + 199065600\lambda^{4} - 714240\lambda^{3} - 7680\lambda^{2} + 576\lambda + 1} \right) \\ k_{g7} & = 4l\left( {66886041600\lambda^{6} + 398131200\lambda^{5} - 17418240\lambda^{4} + 483840\lambda^{3} + 15174\lambda^{2} + 471\lambda + 7} \right) \\ k_{g8} & = 48\left( {60\lambda + 1} \right)^{2} \left( {84\lambda - 1} \right) \\ k_{g9} & = - 8l\left( {48\lambda + 1} \right)^{2} \left( {29030400\lambda^{4} + 2592000\lambda^{3} - 30960\lambda^{2} + 420\lambda + 1} \right) \\ k_{g10} & = l\left( {267544166400\lambda^{6} + 1592524800\lambda^{5} - 69672960\lambda^{4} + 1935360\lambda^{3} - 55944\lambda^{2} - 2076\lambda - 5} \right) \\ k_{g11} & = \frac{3072}{l}\left( {60\lambda + 1} \right)^{2} \left( {2520\lambda^{2} + 84\lambda + 1} \right) \\ k_{g12} & = 256l\left( {48\lambda + 1} \right)^{2} \left( {1814400\lambda^{4} + 388800\lambda^{3} + 23040\lambda^{2} + 240\lambda + 1} \right). \\ \end{aligned}$$
(48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkon, M. An efficient finite element formulation for bending, free vibration and stability analysis of Timoshenko beams. J Braz. Soc. Mech. Sci. Eng. 40, 497 (2018). https://doi.org/10.1007/s40430-018-1413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1413-0

Keywords

Navigation