Skip to main content
Log in

Evolution of surface spur gear tooth temperature based on three-dimensional finite element model

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In order to meet the special needs of helicopters with sufficient operating time for landing safely under loss-of-lubrication conditions, it is necessary to avoid the scuffing failure and predict the operating time. A spur gear is taken as the research object. Considering the change of moving source of heat on the gear, simplified models are adopted. Both the spatial distribution and the time history of the gear temperature are simulated by finite element method. The simulation results of bulk temperature are compared with the test measurement ones, while those of the flash temperature history are compared with the experimental and calculation results by Blok flash temperature formula, respectively. The comparison shows a good agreement. The results of simulation and comparison are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Half contact width (mm)

b :

Tooth width (mm)

c 1, c 2 :

Specific heat (J/kg °C)

d 1, d 2 :

Reference diameter (mm)

E 1, E 2 :

Young’s modulus (N/mm2)

\( F_{\text{nc}} \) :

Normal force (N)

\( F_{\text{tc}} \) :

Tangential force (N)

\( h_{\text{c}} \) :

Convective heat transfer coefficient (W/m2 °C)

\( H_{\text{c}} \) :

Height of contact point on the tooth (mm)

k :

Thermal conductivity (W/(m °C))

n :

Surface outward normal

n 1, n 2 :

Gear rotation speed (r/min)

P r :

Prandtl

q tot :

Normalized cooling capacity

Q :

Boundary heating flux (W/m2)

r c :

Radius of contact point (mm)

R e :

Reynolds numbers

\( R_{\text{E1}} \), \( R_{\text{E2}} \) :

Radius of curvature (mm)

R 1, R 2 :

Pitch radius (mm)

T 0 :

Ambient temperature (°C)

T tor :

Torque (N m)

\( V_{\text{e}} \) :

Sliding velocity (m/s)

\( V_{ 1} \), \( V_{ 2} \) :

Velocity (m/s)

\( W_{\text{b}} \) :

Load (N/mm)

\( X_{\text{R}} \) :

Roughness factor (μm)

\( \alpha \) :

Pressure angle (rad)

\( \eta \) :

Dynamic viscosity (N s/m)

\( \lambda_{1} \), \( \lambda_{2} \) :

Thermal conductivity (W/m °C)

\( v_{\text{oil}} \) :

Kinematic viscosity (m2/s)

\( \rho_{1} \), \( \rho_{2} \) :

Density (kg/m3)

\( \nu_{1} \), \( \nu_{2} \) :

Poisson’s ratio

1:

Pinion

2:

Gear

References

  1. Morales W, Handschuh RF (1999) A preliminary study on the vapor/mist phase lubrication of a spur gearbox. Lubr Eng 56(9):14–19

    Google Scholar 

  2. Handschuh RF (2008) Feasibility study of vapor-mist phase reaction lubrication using a thioether liquid. Tribol Trans 52(3):370–375

    Google Scholar 

  3. Handschuh RF (2015) Thermal behavior of aerospace spur gears in normal and loss-of-lubrication conditions. AHS 71st Annual Forum, Virginia Beach, Virginia, 5–7 May 2015

  4. Martin HM (1916) Lubrication of gear teeth. Engineering 102:199–204

    Google Scholar 

  5. Henriot G (1984) La Lubrification Industriele - La Lubrification de Engrenages. Tome 1-Transmissions, Compresseurs, Turbines. Publications de l’Institute Français du Pétrole. Éditions Technip, pp 297–385

  6. Blok H (1937) Theoretical study on temperature rise at surface of actual contact under oiliness lubrication condition. In: Proceedings of the general discussion of lubrication and lubricants, ImechE, 2, pp 222–235

  7. Castro J, Seabra J (2018) Influence of mass temperature on gear scuffing. Tribol Int 119:27–37

    Article  Google Scholar 

  8. Li S, Kahraman A, Anderson N, Wedeven LD (2013) A model to predict scuffing failures of a ball-on-disk contact. Tribol Int 60:233–245

    Article  Google Scholar 

  9. American Gear Manufacture’s Association (2003) AGMA925-A03 effect of lubrication on gear surface distress. American Gear Manufacture’s Association, Alexandria

    Google Scholar 

  10. International Organization for Standardization (2000) ISO/TR 13989-1: 2000 Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears-part 1: flash temperature method. International Organization for Standardization, Geneva

    Google Scholar 

  11. International Organization for Standardization (2000) ISO/TR 13989-2: 2000 Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears-parts 2: integral temperature method. International Organization for Standardization, Geneva

    Google Scholar 

  12. Jaeger JC (1942) Moving sources of heat and temperature at sliding contacts. Proc R Soc N S W 56:203–224

    Google Scholar 

  13. Kalin M, Vižintin J (2001) Comparison of different theoretical models for flash temperature calculation under fretting conditions. Tribol Int 34:831–839

    Article  Google Scholar 

  14. Blok H (1969) The thermal-network method for predicting bulk temperature in gear transmission. Wiley, New York, pp 40–65

    Google Scholar 

  15. Fernandes CMCG, Rocha DMP, Martins RC et al (2018) Finite element method model to predict bulk and flash temperature on polymer gears. Tribol Int 120:255–268

    Article  Google Scholar 

  16. Shi Y, Yao Y, Fei J (2016) Analysis of bulk temperature field and flash temperature for locomotive traction gear. Appl Therm Eng 99:528–536

    Article  Google Scholar 

  17. Handschuh RF, Polly J, Morales W (2011) Gear mesh loss-of-lubrication experiments and analytical simulation. NASA TM-2011-217106, May 2011

  18. Sutter G, Ranc N (2010) Flash temperature measurement during dry friction process at high sliding speed. Wear 268:1237–1242

    Article  Google Scholar 

  19. Castro J, Seabra J (1998) Scuffing and lubricant film breakdown in FZG gears, part I: analytical and experimental approach. Wear 215:104–113

    Article  Google Scholar 

  20. Handschuh RF, Kicher TP (1996) A method for thermal analysis of spiral bevel gears. Trans ASME J Mech Des 118(4):580–585

    Article  Google Scholar 

  21. DeWinter A, Blok H (1974) Fling-off cooling of gear teeth. J Eng Ind Trans ASME 96(1):60–70

    Article  Google Scholar 

  22. Gardon G, Astarita T, Carlomagno GM (1996) Infrared heat transfer measurements on a rotating disk. Opt Diagn Eng 1(2):1–7

    Google Scholar 

  23. Hartnett JP, Deland EC (1961) The influence of Prandtl number on the heat transfer from rotating non-isothermal disks and cones. Trans ASME J Heat Transf 83:95–96

    Article  Google Scholar 

  24. Popiel CZO, Boguslawski L (1975) Load heat-transfer coefficient on the rotating disk in still air. Int J Heat Mass Transf 18:167–170

    Article  Google Scholar 

  25. Dorfman LA. Hydrodynamic resistance and the heat loss of rotating solids. Translated 1963 (Oliver and Boyd)

  26. Cheng HS, Patir N (1981) Prediction of the bulk temperature in spur gear based on the finite element temperature analysis. ASLE Trans 22(1):25–36

    Article  Google Scholar 

  27. Blok H (1963) The flash temperature concept. Wear 6(6):483–494

    Article  Google Scholar 

  28. Errichello R (2013) Gear contact temperature and scuffing risk analysis. In: Wang QJ, Chung Y-W (eds) Encyclopedia of tribology. Springer, Boston, pp 1469–1470

    Chapter  Google Scholar 

Download references

Acknowledgements

The paper is supported by National Defense Pre-study Fund of China Grant 8130208.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jihua Chang or Xiaozhou Hu.

Additional information

Technical Editor: André Cavalieri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Liu, S., Hu, X. et al. Evolution of surface spur gear tooth temperature based on three-dimensional finite element model. J Braz. Soc. Mech. Sci. Eng. 41, 370 (2019). https://doi.org/10.1007/s40430-019-1870-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1870-0

Keywords

Navigation