Skip to main content
Log in

Whale optimizer algorithm to tune PID controller for the trajectory tracking control of robot manipulator

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this work, we are interested to the PID control of nonlinear systems and more specially the control of a robot manipulator. The idea is to determine the optimal parameters (\(K_{p}, K_{i}\) and \(K_{d}\)) of the controller using a novel algorithm of optimization called whale optimizer algorithm (WOA). To study the effectiveness of WOA-PID controller, its performance is compared with other controllers such as particle swarm optimization-PID (PSO-PID) and grey wolf optimizer-PID (GWO-PID). The model of robot manipulator and all controllers were tested using Simulink/MATLAB. Simulation results obtained clearly indicate the superiority of WOA-PID controller over the other controllers for trajectory tracking, better settling time, and ITAE errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kumar JS, Amuth EK (2014) Control and tracking of robot manipulator using PID controller and hardware in loop simulation. In: International conference on communication and network technologies (ICCNT), pp 1–3

  2. Su Y, Muller PC, Zheng C (2010) Global asymptotic saturated PID control for robot manipulator. IEEE Trans Control Syst Technol 8(6):1280–1288

    Google Scholar 

  3. Abdelhedi F, Bouteraa Y, Chemori A, Derbel N (2014) Nonlinear PID and feedforward control of robotic manipulators. In: 15th International conference on sciences and techniques of automatic control and computer engineering (STA), pp 349–354

  4. Bascetta L, Rocco P (2007) Revising the robust control design for rigid robot manipulator. In: International conference on robotics and automation. IEEE, pp 4478–4483

  5. Kasac J, Novakovic B, Majetic D, Brezak D (2006) Global positioning of robot manipulator with mixed revolute and prismatic joints. IEEE Trans Autom Control 51:1035–1040

    Article  MathSciNet  Google Scholar 

  6. Su YX, Zheng CH (2017) PID control for global finite-time regulation of robotic manipulators. Int J Syst Sci 48:547–558

    Article  MathSciNet  Google Scholar 

  7. Mendoza M, Zavala-rio A, Santibanez V, Reyes F (2015) A generalized PID-type control scheme with simple tuning for the global regulation of robot manipulators with contrained inputs. Int J Constr 88:1995–2012

    Article  Google Scholar 

  8. Akyuz IH, Yolacan E, Ertunc HM, Bingul Z (2011) PID and state feedback control of single-link flexible joint robot. In: International conference on mechatronics. IEEE, pp 409–414

  9. Zavala-Rio A, Santibanez V (2006) Simple extensions of the PD with desired gravity compensation control law for robot manipulators with bounded inputs. IEEE Trans Control Syst Technol 14:958–965

    Article  Google Scholar 

  10. Bouhajar S, Maherzi E, Khraief N, Besbes M, Belghith S (2015) Trajectory generation using predictive PID control for stable walking humanoid robot. In: International conference on advanaced wireless information and communication technology (AWICT2015) procedia computer science, vol 73, pp 86–93

    Article  Google Scholar 

  11. Leen G, Ray G (2012) A set of decentralized PID controllers for an n-link robot manipulator. Indian Acad Sci Sadhana 37:405–423

    MATH  Google Scholar 

  12. Su Y, Muller PC, Zheng CH (2007) A global asymptotic stable output feedback PID regulator for robot manipulator. In: International conference on robotics and automation. IEEE, pp 44489–44844

  13. Su YX, Sun D, Ren L, Mills JK (2006) Integration of saturated PI synchronous control and PD feedback for control of parallel manipulators. IEEE Trans Robot 22:202–207

    Article  Google Scholar 

  14. Kasac J, Novakovic B, Majetic D, BrezakD D (2006) Global positioning of robot manipulator with mixed revolute and prismatic joints. IEEE Trans Autom Control 51:1035–1040

    Article  MathSciNet  Google Scholar 

  15. Parra-Vega V, Arimoto S, Liu YH, Hirzinger G, Akella P (2003) Dynamic sliding PID control for tracking of robot manipulators: theory and experiments. IEEE Trans Robot Autom 19(6):967–976

    Article  Google Scholar 

  16. Gorez R (1999) Globally stable PID-like control of mechanical systems. Syst Control 38(1):61–72

    Article  MathSciNet  Google Scholar 

  17. Kelly R (1998) Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions. IEEE Trans Autom Control 43(7):934–938

    Article  MathSciNet  Google Scholar 

  18. Xu J, Qiao L (2013) Robust Adaptive PID control of robot manipulator with bounded disturbances. Math Probl Eng 2013:1–13

    MathSciNet  MATH  Google Scholar 

  19. Wang H, Zhu S, Liu S (2009) Adaptive PID control of robot manipulators with Hinf tracking performance. In: International conference on advanced intellgence and mechatronics. IEEE/ASME, pp 1515–1520

  20. Perez J, Perez JP, Soto R, Flores A, Rodriguez F, Meza JL (2012) Trajectory tracking error using PID control law for two link robot manipulator via adaptive neural networks. Procedia Technol 3:139–146

    Article  Google Scholar 

  21. Cvejn J, Tvrdik J (2017) Learning control of robot manipulator based on a decentralized position dependent PID controller. In: 1st International conference on process control (PC), pp 167–172

  22. Dehghani A, Khodadadi H (2015) Fuzzy logic self-tuning PID control for a single-link flexible joint robot manipulator in the presence of uncertainty. In: 15th international conference on control, automation and systems (ICCAS), pp 186–191

  23. Du M, Fang J, Wang L (2011) A parameter self-tuning fuzzy-PID control system for pneumatic manipulator of library robot. In: International conference on electronics, communications and control (ICECC), pp 4111–4115

  24. Meza JL, Santibanez V, Soto R, Llama MA (2009) Stable fuzzy self-tuning PID control of robot manipulators. In: International Conference on Systems, Man, and Cybernetics. IEEE, pp 2624–2629

  25. Norouzzadeh Ravari AR, Taghirad HD (2009) A novel hybrid fuzzy-PID controller for tracking control of robot manipulators. In: International conference in robotics and Biomimetic (ROBIO). IEEE, pp 16251–630

  26. Yu W, Rosen J (2013) Neural PID control of robot manipulator with application to an upper limb escoskeleton. IEEE Trans Cybern 43(2):673–684

    Article  Google Scholar 

  27. Nahapetian N, Jahed Motlagh MR, Analoui M (2009) PID gain tuning using Genetic algorithms and fuzzy logic for robot manipulator control. In: International conference on advanced computer control, pp 346–350

  28. Nahapetian N, Jahed Motlagh MR, Analoui M (2009) Adaptive PID gain tuning using fuzzy logic and additional external performance index reference for controlling robot manipulator. In: International conference on advanced computer control, pp 448–452

  29. Meza JL, Soto R, Arriaga J (2009) An optimal fuzzy self-tuning PID controller for robot manipulators via genetic algorithm. In: 8th Mescican international conference on artificial intellgence (MICAI), pp 21–26

  30. Elkhateeb NA, Badr RI (2017) Novel PID tracking controller for 2DOF robotic manipulator system based on artificial bee colony algorithm. In: Electrical control and communication engineering, vol 13. Rig Technical University, pp 55–62

  31. Mehdifar F, Gholami HS, Kharrati H, Menhaj MB (2017) A modified fruit fly optimization algorithm and its application to control of robot manipulator. In: 5th International conference on control, instrumentaion and automation (ICCIA), pp 120–125

  32. Kankashvar MR, Kharrati H, Asl RM, Sadeghiani AB (2015) Designing PID controllers for a five-bar linkage robot manipulator using BBO algorithm. In: 6th International conference on modeling, simulation and applied optimization (ICMSAO), pp 1–6

  33. Das MT, Dulger LC (2010) Control of SCARA robot: PSO–PID approach. Control Intell Syst 38(1):24–31

    MATH  Google Scholar 

  34. Al-Saed F, Mohammed AH (2012) Design and implementation of PSO–PID controller for MA2000 robotic manipulator. Int J Comp Sci Eng Technol 2(9):1427–1433

    Google Scholar 

  35. Djaneye-Boundjou O, Xu X, Ordonez R (2016) Automated particle swarm optimization based PID tuning for control of robotic arm. In: IEEE national Aerospace and electronics conference (NECON) and Ohio innovation summit (OIS), pp 164–169

  36. Thunyajarern S, Seeboonruang U, Kaitwanidvilai S (2017) PSO based adaptive force controller for 6DOF robot manipulators. In: Proceeding of the world congress on engineering and computer sciences (WCECS), San Francisco, USA, pp 691–695

  37. Pano V, Ouyang PR (2014) Gain tuning of position domain PID control using particle swarm optimization. Robotica 34(6):1351–1366

    Article  Google Scholar 

  38. Kapoor N, Ohr J (2015) Improved PSO tuned classical controllers (PID and SMC) for robotic manipulator. Int J Mod Educ Comp Sci 1:47–54

    Google Scholar 

  39. Elkaranshway HA, Bayoumi EHE, Soliman HM (2011) PSO based robust PID control for flexible manipulator systems. Int J Model Ident Constr 14(1–2):1–12

    Google Scholar 

  40. Tsai PW, Nguyen TT, Dao TK (2016) Robot path planning optimization based on multi-objective grey wolf optimizer. In: International conference on genetic and evolutionary computation. Springer, Berlin, pp 166–73

    Google Scholar 

  41. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  42. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  43. Kennedy J, Eberhart R (1995) Particles swarm optimization. In: International conference on neural networks. IEEE, pp 1942–1948

Download references

Acknowledgements

Funding was provided by université 8 Mai 1945.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatiha Loucif.

Additional information

Technical Editor: Victor Juliano De Negri, D.Eng.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loucif, F., Kechida, S. & Sebbagh, A. Whale optimizer algorithm to tune PID controller for the trajectory tracking control of robot manipulator. J Braz. Soc. Mech. Sci. Eng. 42, 1 (2020). https://doi.org/10.1007/s40430-019-2074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-2074-3

Keywords

Navigation