Skip to main content
Log in

Damped vibration analysis of cracked Timoshenko beams with restrained end conditions

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Damped vibration of a cracked Timoshenko beam with ends supported with damper, linear and rotational springs is investigated. Frequencies in complex forms have been obtained for both cracked Euler–Bernoulli and Timoshenko beams. Depending upon the crack-depth and crack-location, frequencies have been tabulated in each case. The results have also been compared in terms of the ratio of the beam depth to the beam length. Modal shapes for various conditions have also been plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mahmoud MA (2001) Stress intensity factors for single and double edge cracks in a simple beam subject to a moving load. Int J Fract 111:151–161. https://doi.org/10.1023/A:1012288400397

    Article  Google Scholar 

  2. Masoud S, Jarrah MA, Al-Maamory M (1998) Effect of crack depth on the natural frequency of a prestressed fixed–fixed beam. J Sound Vib 214:201–212. https://doi.org/10.1006/jsvi.1997.1541

    Article  Google Scholar 

  3. Reis M, Pala Y (2012) Vibration of a cracked cantilever beam under moving mass load. J Civ Eng Manag 18:106–113. https://doi.org/10.3846/13923730.2011.619330

    Article  Google Scholar 

  4. Pala Y, Reis M (2013) Dynamic response of a cracked beam under a moving mass load. J Eng Mech 139:1229–1238. https://doi.org/10.1061/(asce)em.1943-7889.0000558

    Article  Google Scholar 

  5. Chondros TG, Dimarogonas AD, Yao J (1998) A continuous cracked beam vibration theory. J Sound Vib 215:17–34. https://doi.org/10.1006/jsvi.1998.1640

    Article  MATH  Google Scholar 

  6. Hasan WM (1995) Crack detection from the variation of the eigenfrequencies of a beam on elastic foundation. Eng Fract Mech 52:409–421. https://doi.org/10.1016/0013-7944(95)00037-V

    Article  Google Scholar 

  7. Lele SP, Maiti SK (2002) Modeling of transverse vibration of short beams for crack detection and measurement of crack extension. J Sound Vib 257:559–583. https://doi.org/10.1006/jsvi.2002.5059

    Article  Google Scholar 

  8. Krawczuk M, Palacz M, Ostachowicz W (2003) The dynamic analysis of a cracked Timoshenko beam by the spectral element method. J Sound Vib 264:1139–1153. https://doi.org/10.1016/S0022-460X(02)01387-1

    Article  Google Scholar 

  9. Loya JA, Rubio L, Fernandez-Saez J (2006) Natural frequencies for bending vibrations of Timoshenko cracked beams. J Sound Vib 290:640–653. https://doi.org/10.1016/j.jsv.2005.04.005

    Article  Google Scholar 

  10. Lin HP, Chang SC, Wu JD (2002) Beam vibrations with an arbitrary number of cracks. J Sound Vib 258:987–999. https://doi.org/10.1006/jsvi.2002.5184

    Article  Google Scholar 

  11. Orhan S (2007) Analysis of free and forced vibration of a cracked cantilever beam. NDT E Int 40:443–450. https://doi.org/10.1016/j.ndteint.2007.01.010

    Article  Google Scholar 

  12. Lin HP (2004) Direct and inverse methods on free vibration analysis of simply supported beams with a crack. Eng Struct 26:427–436. https://doi.org/10.1016/j.engstruct.2003.10.014

    Article  Google Scholar 

  13. Khaji N, Shafiei M, Jalalpour M (2009) Closed-form solutions for crack detection problem of Timoshenko beams with various boundary conditions. Int J Mech Sci 51:667–681. https://doi.org/10.1016/j.ijmecsci.2009.07.004

    Article  Google Scholar 

  14. Rizos PF, Aspragathos N, Dimarogonas AD (1990) Identification of crack location and magnitude in a cantilever beam from the vibration modes. J Sound Vib 138:381–388

    Article  Google Scholar 

  15. Liang RY, Choy FK, Hu J (1991) Detection of cracks in beam structures using measurements of natural frequencies. J Frankl Inst 328:505–518. https://doi.org/10.1016/0016-0032(91)90023-V

    Article  MATH  Google Scholar 

  16. Gounaris GD, Papadopoulos CA (1997) Analytical and experimental crack identification of beam structures in air or in fluid. Comput Struct 65:633–639. https://doi.org/10.1016/S0045-7949(96)00440-3

    Article  Google Scholar 

  17. Thalapil J, Maiti SK (2014) Detection of longitudinal cracks in long and short beams using changes in natural frequencies. Int J Mech Sci 83:38–47. https://doi.org/10.1016/j.ijmecsci.2014.03.022

    Article  Google Scholar 

  18. Nahvi H, Jabbari M (2005) Crack detection in beams using experimental modal data and finite element model. Int J Mech Sci 47:1477–1497. https://doi.org/10.1016/j.ijmecsci.2005.06.008

    Article  Google Scholar 

  19. Hou C, Lu Y (2017) Experimental study of crack identification in thick beams with a cracked beam element model. J Eng Mech 143:04017020. https://doi.org/10.1061/(asce)em.1943-7889.0001215

    Article  Google Scholar 

  20. Altunisik AC, Okur FY, Karaca S, Kahya V (2019) Vibration-based damage detection in beam structures with multiple cracks: modal curvature vs. modal flexibility methods. Nondestruct Test Eval 34:33–53. https://doi.org/10.1080/10589759.2018.1518445

    Article  Google Scholar 

  21. Kim K, Kim S, Sok K, Pak C, Han K (2018) A modeling method for vibration analysis of cracked beam with arbitrary boundary condition. J Ocean Eng Sci 3(4):367–381

    Article  Google Scholar 

  22. Chouiyakh H, Azrar L, Alnefaie K, Akourri O (2017) Vibration and multi-crack identification of Timoshenko beams under moving mass using the differential quadrature method. Int J Mech Sci 120:1–11

    Article  Google Scholar 

  23. Heydari M, Ebrahimi A, Behzad M (2014) Forced vibration analysis of a Timoshenko cracked beam using a continuous model for the crack. Eng Sci Technol Int J 17(4):194–204

    Google Scholar 

  24. Golub MV, Zhang C (2015) In-plane time-harmonic elastic wave motion and resonance phenomena in a layered phononic crystal with periodic cracks. J Acoust Soc Am 137(1):238–252

    Article  Google Scholar 

  25. Zhang Y, Murphy KD (2007) Crack propagation in structures subjected to periodic excitation. Acta Mech Solida Sin 20(3):236–246

    Article  Google Scholar 

  26. Kocaturk T, Simsek M (2005) Free vibration analysis of Timoshenko beams under various boundary conditions. J Eng Nat Sci 1:30–44

    Google Scholar 

  27. Rao S (2014) Mechanical vibrations, continuous systems, chapter 8, 726,738, Upper Saddle River, New Jersey, USA, Pearson Education

  28. Ostachowicz WM, Krawczuk M (1991) Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J Sound Vib 150(2):191–201. https://doi.org/10.1016/0022-460X(91)90615-Q

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semih Beycimen.

Additional information

Technical Editor: José Roberto de França Arruda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The first of Eq. (25) is

$$\begin{aligned} {{{{\varPsi _{1} }'}}}(\xi ) &= {{{\overline{m}}}_{1}}{{C}_{1}}\sin {{\beta }_{1}}\xi +{{C}_{2}}{{{\overline{m}}}_{1}}\cos {{\beta }_{1}}\xi +{{C}_{3}}{{{\overline{m}}}_{2}}\sinh {{\beta }_{2}}\xi \\& \quad+\,{{C}_{4}}{{{\overline{m}}}_{2}}\cosh {{\beta }_{2}}\xi \, . \end{aligned}$$

Integration and derivation of \(\varPsi _{1}'\) in terms of \(\xi\) yields

$$\begin{aligned} \varPsi _{1}(\xi ) &= -{{m}_{1}}{{C}_{1}}\cos {{\beta }_{1}}\xi +{{m}_{1}}{{C}_{2}}\sin {{\beta }_{1}}\xi +{{m}_{2}}{{C}_{3}}\cosh {{\beta }_{2}}\xi \\& \quad+\,{{m}_{2}}{{C}_{4}}\sinh {{\beta }_{2}}\xi +C_5 \, ,\\ \varPsi _{1}''(\xi ) &= \left( \overline{m}_1 C_1\beta _{1}\cos {\beta _{1}\xi }-\overline{m}_1 C_2\beta _{1}\sin {\beta _{1}\xi }\right. \\& \quad\left. +\overline{m}_2 C_3\beta _{2}\cosh {\beta _{2}\xi }+\overline{m}_2 C_4\beta _{2}\sinh {\beta _{2}\xi }\right) \, . \end{aligned}$$

The first of Eq. (23) is

$$\begin{aligned} {{Y}_{1}}(\xi )={{C}_{1}}\sin {{\beta }_{1}}\xi +{{C}_{2}}\cos {{\beta }_{1}}\xi +{{C}_{3}}\sinh {{\beta }_{2}}\xi +{{C}_{4}}\cosh {{\beta }_{2}}\xi \, . \end{aligned}$$

Differentiating \({{Y}_{1}}(\xi )\) with respect to \(\xi\) gives

$$\begin{aligned} Y_1'(\xi ) &= C_1 \beta _{1}\cos {\beta _{1}\xi }-C_2 \beta _{1}\sin {\beta _{1}\xi }+C_3 \beta _{2}\cosh {\beta _{2}\xi }\\& \quad+\,C_4 \beta _{2}\sinh {\beta _{2}\xi }=0 \, . \end{aligned}$$

Inserting these expressions into the second of Eq. (19) yields

$$\begin{aligned}&s^2\left( \overline{m}_1 C_1\beta _{1}\cos {\beta _{1}\xi }-\overline{m}_1 C_2\beta _{1}\sin {\beta _{1}\xi }+\overline{m}_2 C_3\beta _{2}\cosh {\beta _{2}\xi }\right. \\&\quad \left. +\,\overline{m}_2 C_4\beta _{2}\sinh {\beta _{2}\xi }\right) -\left( 1-\lambda ^2 r^2 s^2\right) \left( -{{m}_{1}}{{C}_{1}}\cos {{\beta }_{1}}\xi \right. \\&\quad \left. +\,{{m}_{1}}{{C}_{2}}\sin {{\beta }_{1}}\xi +{{m}_{2}}{{C}_{3}}\cosh {{\beta }_{2}}\xi +{{m}_{2}}{{C}_{4}}\sinh {{\beta }_{2}}\xi +C_5\right) \\&\quad +\,C_1 \beta _{1}\cos {\beta _{1}\xi }-C_2 \beta _{1}\sin {\beta _{1}\xi }+C_3 \beta _{2}\cosh {\beta _{2}\xi }\\&\quad +\,C_4 \beta _{2}\sinh {\beta _{2}\xi }=0 \, , \end{aligned}$$

where \(C_5\) is a constant. In order that the equality is satisfied, \(C_5\) must surely be zero since the all remaining terms involve trigonometric or hyperbolic functions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pala, Y., Beycimen, S. & Kahya, C. Damped vibration analysis of cracked Timoshenko beams with restrained end conditions. J Braz. Soc. Mech. Sci. Eng. 42, 488 (2020). https://doi.org/10.1007/s40430-020-02558-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02558-1

Keywords

Navigation