Skip to main content
Log in

A review on minimum quantity lubrication technique application and challenges in grinding process using environment-friendly nanofluids

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

High production rate of the machining industry is the need of the hour for the industry to meet the demand and improve its profits. However, to meet the need for a high production rate, the machining parameters such as feed, speed, and depth of cut should be kept high. The machining at high parameters results in the generation of high temperatures at the machining zone, which damages the tool as well as the workpiece surface. In order to control this temperature, cutting fluids are used by the machining industry in large amounts. However, these cutting fluids are toxic and the use of these cutting fluids deteriorates the environment and adds to the cost of production. Moreover, the sticker environment regulations for the use of cutting fluids need to be reduced. In order to address this problem, researchers have investigated various cooling lubrication techniques and have concluded that minimum quantity lubrication (MQL) technique can address this problem to a large extent. The present paper includes reviews of various environment-friendly lubrication techniques with a special focus on MQL. The performance of MQL technique in various machining operations such as drilling, milling, turning, etc. has been reviewed with a special focus on grinding operations. Efforts are made to summarize the findings of previous studies. Moreover, technological improvements in the MQL technique by the use of nanoparticles and vegetable oils have also been included. The present paper also highlights the challenges faced in the application of MQL technique and the future scope of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Hadad M, Hadi M (2013) An investigation on surface grinding of hardened stainless steel S34700 and aluminum alloy AA6061 using minimum quantity of lubrication (MQL) technique. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-013-4830-3

    Article  Google Scholar 

  2. Su Y, Gong L, Li B, Liu Z, Chen D (2016) Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. Int J Adv Manuf Technol 83(9):2083–2089. https://doi.org/10.1007/s00170-015-7730-x

    Article  Google Scholar 

  3. Rao PN (2005) Manufacturing technology: metal cutting and machine tools. Tata McGraw-Hill Publishing Co., Ltd., New Delhi

    Google Scholar 

  4. Ingarao G, Priarone PC, Gagliardi F, Di Lorenzo R, Settineri L (2015) Subtractive versus mass conserving metal shaping technologies: an environmental impact comparison. J Clean Prod 87:862–873. https://doi.org/10.1016/j.jclepro.2014.10.018

    Article  Google Scholar 

  5. Leskover PJG (1986) The metallurgical aspect of machining. J Clean Prod Ann CIRP 35(1):537–550. https://doi.org/10.1016/S0007-8506(07)60199-2

    Article  Google Scholar 

  6. Tonshoff HK, Brinksmeier E (1980) Determination of the mechanical and thermal influences on machined surface by microhardness and residual stress analysis. J Clean Prod 87:519–532. https://doi.org/10.1016/S0007-8506(16)30145-7

    Article  Google Scholar 

  7. Beddoes J, Bibby MJ (2009) Principles of metal manufacturing processes. Butterworth-Heinemann, Burlington

    Google Scholar 

  8. Soković M, Mijanović K (2001) Ecological aspects of the cutting fluids and its influence on quantifiable parameters of the cutting processes. J Mater Process Technol 109(1–2):181–189. https://doi.org/10.1016/S0924-0136(00)00794-9

    Article  Google Scholar 

  9. Klocke F, Eisenblätter G (1997) Dry cutting. CIRP 46(2):519–526. https://doi.org/10.1016/S0007-8506(07)60877-4

    Article  Google Scholar 

  10. Pawlak Z, Klamecki BE, Rauckyte T, Shpenkov GP, Kopkowski A (2005) The tribochemical and micellar aspects of cutting fluids. Tribol Int 38(1):1–4. https://doi.org/10.1016/j.triboint.2004.04.004

    Article  Google Scholar 

  11. Ebbrell S, Woolley NH, Tridimas YD, Allanson DR, Rowe WB (2000) The effects of cutting fluid application methods on the grinding process. Int J Mach Tools Manuf 40(2):209–223. https://doi.org/10.1016/S0890-6955(99)00060-7

    Article  Google Scholar 

  12. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101. https://doi.org/10.1016/j.ijmachtools.2012.02.002

    Article  Google Scholar 

  13. Min S, Inasaki I, Fujimura S, Wada T, Suda S, Wakabayashi T (2005) A study on tribology in minimal quantity lubrication cutting. CIRP Ann 54(1):105–108. https://doi.org/10.1016/S0007-8506(07)60060-2

    Article  Google Scholar 

  14. Kumar V, Sinha SK, Agarwal AK (2019) Tribological studies of an internal combustion engine. In: Agarwal AK, Gupta JG, Sharma N, Singh AP (eds) Advanced engine diagnostics. Springer Singapore, Singapore, pp 237–253

    Google Scholar 

  15. Groover MP (2002) Fundamentals of modern manufacturing. John Wiley & Sons, United State

    Google Scholar 

  16. Alves SM, de Oliveira JFG (2006) Development of new cutting fluid for grinding process adjusting mechanical performance and environmental impact. J Mater Process Technol 179(1–3):185–189. https://doi.org/10.1016/j.jmatprotec.2006.03.090

    Article  Google Scholar 

  17. Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tools Manuf 122:55–65. https://doi.org/10.1016/j.ijmachtools.2017.06.003

    Article  Google Scholar 

  18. Obikawa T, Kamata Y, Shinozuka J (2006) High-speed grooving with applying MQL. Int J Mach Tools Manuf 46(14):1854–1861. https://doi.org/10.1016/j.ijmachtools.2005.11.007

    Article  Google Scholar 

  19. Ren YH, Zhang B, Zhou ZX (2009) Specific energy in grinding of tungsten carbides of various grain sizes. CIRP Ann Manuf Technol 58(1):299–302. https://doi.org/10.1016/j.cirp.2009.03.026

    Article  Google Scholar 

  20. Zhang Y, Li C, Ji H, Yang X, Yang M, Jia D, Zhang X, Li R, Wang J (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J Mach Tools Manuf 122:81–97. https://doi.org/10.1016/j.ijmachtools.2017.06.002

    Article  Google Scholar 

  21. Gao T, Zhang Y, Li C, Wang Y, Chen Y, An Q, Zhang S, Li HN, Cao H, Ali HM (2022) Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies. Front Mech Eng 17(2):1–35. https://doi.org/10.1007/s11465-022-0680-8

    Article  Google Scholar 

  22. Irani R, Bauer R, Warkentin A (2005) A review of cutting fluid application in the grinding process. Int J Mach Tools Manuf 45(15):1696–1705. https://doi.org/10.1016/j.ijmachtools.2005.03.006

    Article  Google Scholar 

  23. Malkin SaG C (2008) Grinding technology: theory and application of machining and abrasives. Ind Press 2:169–179

    Google Scholar 

  24. Jain R (2009) Production technology. Khanna Publishers, Delhi

    Google Scholar 

  25. Raghuwanshi BS (2015) A course in workshop technology. Dhanpat Rai & Co. (Pvt.) Ltd., New Delhi

    Google Scholar 

  26. Brinksmeier E, Heinzel C, Wittmann M (1999) Friction, cooling and lubrication in grinding. CIRP Ann 48(2):581–598. https://doi.org/10.1016/S0007-8506(07)63236-3

    Article  Google Scholar 

  27. Ioan D, Marinescu MPH, Eckart Uhlmann W, Rowe B, Inasaki I (2007) Handbook of machining with grinding wheels. CRC Press, New York

    Google Scholar 

  28. Canarim JAC (2009) Analysis of the influence of sparkout time on grinding using several lubrication/cooling methods. J Braz Soc Mech Sci Eng 31(1):47–51. https://doi.org/10.1590/S1678-58782009000100007

    Article  Google Scholar 

  29. Kamata Y, Obikawa T (2007) High speed MQL finish-turning of Inconel 718 with different coated tools. J Mater Process Technol 192:281–286. https://doi.org/10.1016/j.jmatprotec.2007.04.052

    Article  Google Scholar 

  30. Mang T, Dresel W (2007) Lubricants and lubrication. Wiley VCH, Weinheim

    Google Scholar 

  31. Zhang Y, Li C, Jia D, Zhang D, Zhang X (2015) Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. J Clean Prod 87:930–940. https://doi.org/10.1016/j.jclepro.2014.10.027

    Article  Google Scholar 

  32. Sankaranarayanan R, Hynes NRJ, Kumar JS, Sujana JAJ (2021) Random decision forest based sustainable green machining using Citrullus lanatus extract as bio-cutting fluid. J Manuf Process 68:1814–1823. https://doi.org/10.1016/j.jmapro.2021.07.014

    Article  Google Scholar 

  33. Ghani JA, Rizal M, Che Haron CH (2014) Performance of green machining: a comparative study of turning ductile cast iron FCD700. J Clean Prod 85:289–292. https://doi.org/10.1016/j.jclepro.2014.02.029

    Article  Google Scholar 

  34. Pal A, Chatha SS, Sidhu HS (2021) Tribological characteristics and drilling performance of nano-MoS2-enhanced vegetable oil-based cutting fluid using eco-friendly MQL technique in drilling of AISI 321 stainless steel. J Braz Soc Mech Sci Eng 43(4):1–20. https://doi.org/10.1007/s40430-021-02899-5

    Article  Google Scholar 

  35. Sayuti M, Sarhan AA, Salem F (2014) Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J Clean Prod 67:265–276. https://doi.org/10.1016/j.jclepro.2013.12.052

    Article  Google Scholar 

  36. Diniz AE, Micaroni R (2002) Cutting conditions for finish turning process aiming: the use of dry cutting. Int J Mach Tools Manuf 42(8):899–904. https://doi.org/10.1016/S0890-6955(02)00028-7

    Article  Google Scholar 

  37. Khettabi R, Nouioua M, Djebara A, Songmene V (2017) Effect of MQL and dry processes on the particle emission and part quality during milling of aluminum alloys. Int J Adv Manuf Technol 92(5):2593–2598. https://doi.org/10.1007/s00170-017-0339-5

    Article  Google Scholar 

  38. Hong SY, Zhao Z (1999) Thermal aspects, material considerations and cooling strategies in cryogenic machining. Clean Prod Process 1(2):107–116. https://doi.org/10.1007/s100980050016

    Article  Google Scholar 

  39. Liu M, Li C, Zhang Y, An Q, Yang M, Gao T, Mao C, Liu B, Cao H, Xu X (2021) Cryogenic minimum quantity lubrication machining: from mechanism to application. Front Mech Eng 16(4):649–697. https://doi.org/10.1007/s11465-021-0654-2

    Article  Google Scholar 

  40. Yildiz Y, Nalbant M (2008) A review of cryogenic cooling in machining processes. Int J Mach Tools Manuf 48(9):947–964. https://doi.org/10.1016/j.ijmachtools.2008.01.008

    Article  Google Scholar 

  41. Shokrani A, Al-Samarrai I, Newman ST (2019) Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy. J Manuf Process 43:229–243. https://doi.org/10.1016/j.jmapro.2019.05.006

    Article  Google Scholar 

  42. Khanna N, Shah P (2020) Comparative analysis of dry, flood, MQL and cryogenic CO2 techniques during the machining of 15-5-PH SS alloy. Tribol Int 146:106196. https://doi.org/10.1016/j.triboint.2020.106196

    Article  Google Scholar 

  43. Yıldırım ÇV (2020) Investigation of hard turning performance of eco-friendly cooling strategies: cryogenic cooling and nanofluid based MQL. Tribol Int 144:106127. https://doi.org/10.1016/j.triboint.2019.106127

    Article  Google Scholar 

  44. Kaynak Y, Karaca HE, Noebe RD, Jawahir IS (2013) Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: a comparison of tool-wear performance with dry and MQL machining. Wear 306(1):51–63. https://doi.org/10.1016/j.wear.2013.05.011

    Article  Google Scholar 

  45. Sun Y, Huang B, Puleo DA, Jawahir IS (2015) Enhanced machinability of Ti-5553 alloy from cryogenic machining: comparison with MQL and flood-cooled machining and modeling. Proc CIRP 31:477–482. https://doi.org/10.1016/j.procir.2015.03.099

    Article  Google Scholar 

  46. Thompson D, Kriebel D, Quinn MM, Wegman DH, Eisen EA (2005) Occupational exposure to metalworking fluids and risk of breast cancer among female autoworkers. Am J Ind Med 47(2):153–160. https://doi.org/10.1002/ajim.20132

    Article  Google Scholar 

  47. Pusavec F, Krajnik P, Kopac J (2010) Transitioning to sustainable production–part I: application on machining technologies. J Clean Prod 18(2):174–184. https://doi.org/10.1016/j.jclepro.2009.08.010

    Article  Google Scholar 

  48. Jayal AD, Balaji AK, Sesek R, Gaul A, Lillquist DR (2007) Machining performance and health effects of cutting fluid application in drilling of A390.0 cast aluminum alloy. J Manuf Process 9(2):137–146. https://doi.org/10.1016/S1526-6125(07)70114-7

    Article  Google Scholar 

  49. Pal A, Chatha SS, Sidhu HS (2022) Assessing the lubrication performance of various vegetable oil-based nano-cutting fluids via eco-friendly MQL technique in drilling of AISI 321 stainless steel. J Braz Soc Mech Sci Eng 44(4):1–26. https://doi.org/10.1007/s40430-022-03442-w

    Article  Google Scholar 

  50. Pal A, Chatha SS, Singh K (2020) Performance evaluation of minimum quantity lubrication technique in grinding of AISI 202 stainless steel using nano-MoS2 with vegetable-based cutting fluid. Int J Adv Manuf Technol 110(1–2):125–137. https://doi.org/10.1007/s00170-020-05840-7

    Article  Google Scholar 

  51. Wang X, Li C, Zhang Y, Ali HM, Sharma S, Li R, Yang M, Said Z, Liu X (2022) Tribology of enhanced turning using biolubricants: a comparative assessment. Tribol Int 174:107766. https://doi.org/10.1016/j.triboint.2022.107766

    Article  Google Scholar 

  52. Attanasio A, Gelfi M, Giardini C, Remino C (2006) Minimal quantity lubrication in turning: effect on tool wear. Wear 260(3):333–338. https://doi.org/10.1016/j.wear.2005.04.024

    Article  Google Scholar 

  53. Dhar NR, Kamruzzaman M, Ahmed M (2006) Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. J Mater Process Technol 172(2):299–304. https://doi.org/10.1016/j.jmatprotec.2005.09.022

    Article  Google Scholar 

  54. Gaitonde VN, Karnik SR, Davim JP (2008) Selection of optimal MQL and cutting conditions for enhancing machinability in turning of brass. J Mater Process Technol 204(1–3):459–464. https://doi.org/10.1016/j.jmatprotec.2007.11.193

    Article  Google Scholar 

  55. Sreejith P (2008) Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions. Mater Lett 62(2):276–278. https://doi.org/10.1016/j.matlet.2007.05.019

    Article  Google Scholar 

  56. Maruda RW, Krolczyk GM, Feldshtein E, Pusavec F, Szydlowski M, Legutko S, Sobczak-Kupiec A (2016) A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int J Mach Tools Manuf 100:81–92. https://doi.org/10.1016/j.ijmachtools.2015.10.008

    Article  Google Scholar 

  57. Maruda RW, Krolczyk GM, Nieslony P, Wojciechowski S, Michalski M, Legutko S (2016) The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism. J Manuf Process 24:107–115. https://doi.org/10.1016/j.jmapro.2016.08.006

    Article  Google Scholar 

  58. Sarhan A, Mohsen E, Mohammad HS, Ahmed ADS (2013) Minimum quantity lubrication in grinding process of zirconia (ZrO2) engineering ceramic. Int J Min Metall Mech Eng IJMMME 1(3):187–190

    Google Scholar 

  59. Rabiei F, Rahimi AR, Hadad MJ, Ashrafijou M (2015) Performance improvement of minimum quantity lubrication (MQL) technique in surface grinding by modeling and optimization. J Clean Prod 86:447–460. https://doi.org/10.1016/j.jclepro.2014.08.045

    Article  Google Scholar 

  60. Balan ASS, Vijayaraghavan L, Krishnamurthy R (2013) Minimum quantity lubricated grinding of inconel 751 alloy. Mater Manuf Processes 28(4):430–435. https://doi.org/10.1080/10426914.2013.763965

    Article  Google Scholar 

  61. Park K-H, Olortegui-Yume J, Yoon M-C, Kwon P (2010) A study on droplets and their distribution for minimum quantity lubrication (MQL). Int J Mach Tools Manuf 50(9):824–833. https://doi.org/10.1016/j.ijmachtools.2010.05.001

    Article  Google Scholar 

  62. Braga DU, Diniz AE, Miranda GWA, Coppini NL (2003) Minimum lubrication in Al–Si drilling. J Braz Soc Mech Sci Eng 25:63–68. https://doi.org/10.1590/S1678-58782003000100009

    Article  Google Scholar 

  63. Huang X, Ren Y, Li T, Zhou Z, Zhang G (2018) Influence of minimum quantity lubrication parameters on grind-hardening process. Mater Manuf Processes 33(1):69–76. https://doi.org/10.1080/10426914.2016.1269916

    Article  Google Scholar 

  64. Liu G, Li C, Zhang Y, Yang M, Jia D, Zhang X, Guo S, Li R, Zhai H (2017) Process parameter optimization and experimental evaluation for nanofluid MQL in grinding Ti-6Al-4V based on grey relational analysis. Mater Manuf Processes 33(9):950–963. https://doi.org/10.1080/10426914.2017.1388522

    Article  Google Scholar 

  65. Balan ASS, Kullarwar T, Vijayaraghavan L, Krishnamurthy R (2017) Computational fluid dynamics analysis of MQL spray parameters and its influence on superalloy grinding. Mach Sci Technol 21(4):603–616. https://doi.org/10.1080/10910344.2017.1365889

    Article  Google Scholar 

  66. Dhar NR, Ahmed MT, Islam S (2007) An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel. Int J Mach Tools Manuf 47(5):748–753. https://doi.org/10.1016/j.ijmachtools.2006.09.017

    Article  Google Scholar 

  67. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855–863. https://doi.org/10.1016/S0017-9310(01)00175-2

    Article  MATH  Google Scholar 

  68. Lockwood F, Zhang Z, Forbus T, Choi S (2005) The current development of nanofluid research. SAE Technical Paper 2005-01-1929. https://doi.org/10.4271/2005-01-1929

  69. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79(14):2252–2254. https://doi.org/10.1063/1.1408272

    Article  Google Scholar 

  70. Zhang Y, Li C, Jia D, Zhang D, Zhang X (2015) Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. Int J Mach Tools Manuf 99:19–33. https://doi.org/10.1016/j.ijmachtools.2015.09.003

    Article  Google Scholar 

  71. Mao C, Tang X, Zou H, Huang X, Zhou Z (2012) Investigation of grinding characteristic using nanofluid minimum quantity lubrication. Int J Precis Eng Manuf 13(10):1745–1752. https://doi.org/10.1007/s12541-012-0229-6

    Article  Google Scholar 

  72. Li B, Li C, Zhang Y, Wang Y, Jia D, Yang M, Zhang N, Wu Q, Han Z, Sun K (2017) Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. J Clean Prod 154:1–11. https://doi.org/10.1016/j.jclepro.2017.03.213

    Article  Google Scholar 

  73. Choi SUS (1995) Enhancing thermal conductivity of fluids with nano particles, developments and applications of non-Newtonian flows. FED 231:99–105

    Google Scholar 

  74. Choi C, Jung M, Choi Y, Lee J, Oh J (2011) Tribological properties of lubricating oil-based nanofluids with metal/carbon nanoparticles. J Nanosci Nanotechnol 11(1):368–371. https://doi.org/10.1166/jnn.2011.3227

    Article  Google Scholar 

  75. Devendiran DK, Amirtham VA (2016) A review on preparation, characterization, properties and applications of nanofluids. Renew Sustain Energy Rev 60:21–40. https://doi.org/10.1016/j.rser.2016.01.055

    Article  Google Scholar 

  76. Sarit K, Das SUC, Wenhua Yu, Pradeep T (2007) Nanofluids: science and technology. John Wiley and Sons, New Jersey

    Google Scholar 

  77. Chetan GS, Venkateswara Rao P (2015) Application of sustainable techniques in metal cutting for enhanced machinability: a review. J Clean Prod 100:17–34. https://doi.org/10.1016/j.jclepro.2015.03.039

    Article  Google Scholar 

  78. Jalandhar C, Ghosh S, Paruchuri VR (2015) Application of sustainable techniques in metal cutting for enhanced machinability: a review. J Clean Prod 100:17. https://doi.org/10.1016/j.jclepro.2015.03.039

    Article  Google Scholar 

  79. Li Y, Je Z, Tung S, Schneider E, Xi S (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196(2):89–101. https://doi.org/10.1016/j.powtec.2009.07.025

    Article  Google Scholar 

  80. Khandekar S, Sankar MR, Agnihotri V, Ramkumar J (2012) Nano-cutting fluid for enhancement of metal cutting performance. Mater Manuf Processes 27(9):963–967. https://doi.org/10.1080/10426914.2011.610078

    Article  Google Scholar 

  81. Setti D, Sinha MK, Ghosh S, Venkateswara Rao P (2015) Performance evaluation of Ti–6Al–4V grinding using chip formation and coefficient of friction under the influence of nanofluids. Int J Mach Tools Manuf 88:237–248. https://doi.org/10.1016/j.ijmachtools.2014.10.005

    Article  Google Scholar 

  82. Shen B, Shih AJ, Tung SC (2008) Application of nanofluids in minimum quantity lubrication grinding. Tribol Trans 51(6):730–737. https://doi.org/10.1080/10402000802071277

    Article  Google Scholar 

  83. Li B, Li C, Zhang Y, Wang Y, Jia D, Yang M (2016) Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin J Aeronaut 29(4):1084–1095. https://doi.org/10.1016/j.cja.2015.10.012

    Article  Google Scholar 

  84. Chatha SS, Pal A, Singh T (2016) Performance evaluation of aluminium 6063 drilling under the influence of nanofluid minimum quantity lubrication. J Clean Prod 137:537–545. https://doi.org/10.1016/j.jclepro.2016.07.139

    Article  Google Scholar 

  85. Jia D, Li C, Zhang D, Zhang Y, Zhang X (2014) Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding. J Nanopart Res. https://doi.org/10.1007/s11051-014-2758-7

    Article  Google Scholar 

  86. Tawakoli T, Hadad MJ, Sadeghi MH (2010) Influence of oil mist parameters on minimum quantity lubrication—MQL grinding process. Int J Mach Tools Manuf 50(6):521–531. https://doi.org/10.1016/j.ijmachtools.2010.03.005

    Article  Google Scholar 

  87. Agarwal DK, Vaidyanathan A, Sunil Kumar S (2015) Investigation on convective heat transfer behaviour of kerosene-Al2O3 nanofluid. Appl Therm Eng 84:64–73. https://doi.org/10.1016/j.applthermaleng.2015.03.054

    Article  Google Scholar 

  88. Li CH, Li JY, Wang S, Zhang Q (2013) Modeling and numerical simulation of the grinding temperature field with nanoparticle jet of MQL. Adv Mech Eng 5:986984. https://doi.org/10.1155/2013/986984

    Article  Google Scholar 

  89. Singh R, Dureja JS, Dogra M, Gupta MK, Mia M, Song Q (2020) Wear behavior of textured tools under graphene-assisted minimum quantity lubrication system in machining Ti-6Al-4V alloy. Tribol Int 145:106183. https://doi.org/10.1016/j.triboint.2020.106183

    Article  Google Scholar 

  90. Wang Y, Li C, Zhang Y, Li B, Yang M, Zhang X, Guo S, Liu G (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribol Int 99:198–210. https://doi.org/10.1016/j.triboint.2016.03.023

    Article  Google Scholar 

  91. Singh T, Dureja JS, Dogra M, Bhatti MS (2018) Environment friendly machining of inconel 625 under nano-fluid minimum quantity lubrication (NMQL). Int J Precis Eng Manuf 19(11):1689–1697. https://doi.org/10.1007/s12541-018-0196-7

    Article  Google Scholar 

  92. Sharma AK, Tiwari AK, Dixit AR (2016) Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a comprehensive review. J Clean Prod 127:1–18. https://doi.org/10.1016/j.jclepro.2016.03.146

    Article  Google Scholar 

  93. Wasan DT, Nikolov AD (2003) Spreading of nanofluids on solids. Nature 423(6936):156–159. https://doi.org/10.1038/nature01591

    Article  Google Scholar 

  94. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transfer 125(4):567–574. https://doi.org/10.1115/1.1571080

    Article  Google Scholar 

  95. Singh R, Sharma A, Dixit A, Tiwari A, Pramanik A, Mandal A (2017) Performance evaluation of alumina-graphene hybrid nano-cutting fluid in hard turning. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.06.104

    Article  Google Scholar 

  96. Rajmohan T, Sathishkumar SD, Palanikumar K (2017) Effect of a nanoparticle-filled lubricant in turning of AISI 316L stainless steel (SS). Part Sci Technol 35(2):201–208. https://doi.org/10.1080/02726351.2016.1146812

    Article  Google Scholar 

  97. Bakalova T, Svobodová L, Rosická P, Borůvková K, Voleský L, Louda P (2016) The application potential of SiO2, TiO2 or Ag nanoparticles as fillers in machining process fluids. J Clean Prod. https://doi.org/10.1016/j.jclepro.2016.11.054

    Article  Google Scholar 

  98. Virdi RL, Chatha SS, Singh H (2019) Experiment evaluation of grinding properties under Al2O3 nanofluids in minimum quantity lubrication. Mater Res Express 6(9):096574. https://doi.org/10.1088/2053-1591/ab301f

    Article  Google Scholar 

  99. Javaroni RL, Lopes JC, Sato BK, Sanchez LEA, Mello HJ, Aguiar PR, Bianchi EC (2019) Minimum quantity of lubrication (MQL) as an eco-friendly alternative to the cutting fluids in advanced ceramics grinding. Int J Adv Manuf Technol 103(5):2809–2819. https://doi.org/10.1007/s00170-019-03697-z

    Article  Google Scholar 

  100. Zhang D, Li C, Zhang Y, Jia D, Zhang X (2015) Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding. Int J Adv Manuf Technol 78(5):1275–1288. https://doi.org/10.1007/s00170-014-6722-6

    Article  Google Scholar 

  101. Li M, Yu T, Zhang R, Yang L, Li H, Wang W (2018) MQL milling of TC4 alloy by dispersing graphene into vegetable oil-based cutting fluid. Int J Adv Manuf Technol 99(5):1735–1753. https://doi.org/10.1007/s00170-018-2576-7

    Article  Google Scholar 

  102. Bai X, Li C, Dong L, Yin Q (2019) Experimental evaluation of the lubrication performances of different nanofluids for minimum quantity lubrication (MQL) in milling Ti-6Al-4V. Int J Adv Manuf Technol 101(9):2621–2632. https://doi.org/10.1007/s00170-018-3100-9

    Article  Google Scholar 

  103. Shabgard M, Seyedzavvar M, Mohammadpourfard M (2017) Experimental investigation into lubrication properties and mechanism of vegetable-based CuO nanofluid in MQL grinding. Int J Adv Manuf Technol 92(9):3807–3823. https://doi.org/10.1007/s00170-017-0319-9

    Article  Google Scholar 

  104. Wang Y, Li C, Zhang Y, Yang M, Zhang X, Zhang N, Dai J (2017) Experimental evaluation on tribological performance of the wheel/workpiece interface in minimum quantity lubrication grinding with different concentrations of Al2O3 nanofluids. J Clean Prod 142:3571–3583. https://doi.org/10.1016/j.jclepro.2016.10.110

    Article  Google Scholar 

  105. Pal A, Chatha SS, Sidhu HS (2022) Performance evaluation of various vegetable oils and distilled water as base fluids using eco-friendly MQL technique in drilling of AISI 321 stainless steel. Int J Precis Eng Manuf Green Technol 9(3):745–764. https://doi.org/10.1007/s40684-021-00355-2

    Article  Google Scholar 

  106. Lawal SA, Choudhury IA, Nukman Y (2012) Application of vegetable oil-based metalworking fluids in machining ferrous metals—a review. Int J Mach Tools Manuf 52(1):1–12. https://doi.org/10.1016/j.ijmachtools.2011.09.003

    Article  Google Scholar 

  107. Rao KP, Xie CL (2006) A comparative study on the performance of boric acid with several conventional lubricants in metal forming processes. Tribol Int 39(7):663–668. https://doi.org/10.1016/j.triboint.2005.05.004

    Article  Google Scholar 

  108. Zareh-Desari B, Davoodi B (2016) Assessing the lubrication performance of vegetable oil-based nano-lubricants for environmentally conscious metal forming processes. J Clean Prod 135:1198–1209. https://doi.org/10.1016/j.jclepro.2016.07.040

    Article  Google Scholar 

  109. Emami M, Sadeghi MH, Sarhan AAD, Hasani F (2014) Investigating the minimum quantity lubrication in grinding of Al2O3 engineering ceramic. J Clean Prod 66:632–643. https://doi.org/10.1016/j.jclepro.2013.11.018

    Article  Google Scholar 

  110. Yara-Varón E, Li Y, Balcells M, Canela-Garayoa R, Fabiano-Tixier A-S, Chemat F (2017) Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. Molecules 22(9):1474. https://doi.org/10.3390/molecules22091474

    Article  Google Scholar 

  111. Yuan S, Hou X, Wang L, Chen B (2018) Experimental investigation on the compatibility of nanoparticles with vegetable oils for nanofluid minimum quantity lubrication machining. Tribol Lett. https://doi.org/10.1007/s11249-018-1059-1

    Article  Google Scholar 

  112. Zhang Y, Li HN, Li C, Huang C, Ali HM, Xu X, Mao C, Ding W, Cui X, Yang M (2022) Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction. https://doi.org/10.1007/s40544-021-0536-y

    Article  Google Scholar 

  113. Liao YS, Lin HM, Chen YC (2007) Feasibility study of the minimum quantity lubrication in high-speed end milling of NAK80 hardened steel by coated carbide tool. Int J Mach Tools Manuf 47(11):1667–1676. https://doi.org/10.1016/j.ijmachtools.2007.01.005

    Article  Google Scholar 

  114. Sivalingam V, Zan Z, Sun J, Selvam B, Gupta MK, Jamil M, Mia M (2020) Wear behaviour of whisker-reinforced ceramic tools in the turning of Inconel 718 assisted by an atomized spray of solid lubricants. Tribol Int 148:106235. https://doi.org/10.1016/j.triboint.2020.106235

    Article  Google Scholar 

  115. Li B, Li C, Zhang Y, Wang Y, Yang M, Jia D, Zhang N, Wu Q (2016) Effect of the physical properties of different vegetable oil-based nanofluids on MQLC grinding temperature of Ni-based alloy. Int J Adv Manuf Technol 89(9–12):3459–3474. https://doi.org/10.1007/s00170-016-9324-7

    Article  Google Scholar 

  116. Tasdelen B, Thordenberg H, Olofsson D (2008) An experimental investigation on contact length during minimum quantity lubrication (MQL) machining. J Mater Process Technol 203(1–3):221–231. https://doi.org/10.1016/j.jmatprotec.2007.10.027

    Article  Google Scholar 

  117. Iqbal A, Ning H, Khan I, Liang L, Dar NU (2008) Modeling the effects of cutting parameters in MQL-employed finish hard-milling process using D-optimal method. J Mater Process Tech 199(1–3):379–390. https://doi.org/10.1016/j.jmatprotec.2007.08.029

    Article  Google Scholar 

  118. Silva LR (2013) Environmentally friendly manufacturing: behavior analysis of minimum quantity of lubricant—MQL in grinding process. J Clean Prod. https://doi.org/10.1016/j.jclepro.2013.01.033

    Article  Google Scholar 

  119. Shokoohi Y, Khosrojerdi E, Rassolian Shiadhi Bh (2015) Machining and ecological effects of a new developed cutting fluid in combination with different cooling techniques on turning operation. J Clean Prod 94:330–339. https://doi.org/10.1016/j.jclepro.2015.01.055

    Article  Google Scholar 

  120. Wang X, Li C, Zhang Y, Ding W, Yang M, Gao T, Cao H, Xu X, Wang D, Said Z (2020) Vegetable oil-based nanofluid minimum quantity lubrication turning: academic review and perspectives. J Manuf Process 59:76–97. https://doi.org/10.1016/j.jmapro.2020.09.044

    Article  Google Scholar 

  121. Cetin MH, Ozcelik B, Kuram E, Demirbas E (2011) Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. J Clean Prod 19(17):2049–2056. https://doi.org/10.1016/j.jclepro.2011.07.013

    Article  Google Scholar 

  122. Lawal SA, Choudhury IA, Nukman Y (2013) A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant. J Clean Prod 41:210–221. https://doi.org/10.1016/j.jclepro.2012.10.016

    Article  Google Scholar 

  123. Kuram E, Ozcelik B, Bayramoglu M, Demirbas E, Simsek BT (2013) Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments. J Clean Prod 42:159–166. https://doi.org/10.1016/j.jclepro.2012.11.003

    Article  Google Scholar 

  124. Shashidhara YM, Jayaram SR (2010) Vegetable oils as a potential cutting fluid—an evolution. Tribol Int 43(5–6):1073–1081. https://doi.org/10.1016/j.triboint.2009.12.065

    Article  Google Scholar 

  125. Hadad M, Sadeghi B (2012) Thermal analysis of minimum quantity lubrication-MQL grinding process. Int J Mach Tools Manuf 63:1–15. https://doi.org/10.1016/j.ijmachtools.2012.07.003

    Article  Google Scholar 

  126. Pal A, Chatha SS, Sidhu HS (2021) Performance evaluation of the minimum quantity lubrication with Al2O3-mixed vegetable-oil-based cutting fluid in drilling of AISI 321 stainless steel. J Manuf Process 66:238–249. https://doi.org/10.1016/j.jmapro.2021.04.024

    Article  Google Scholar 

  127. Hernández Battez A, González R, Viesca JL, Fernández JE, Díaz Fernández JM, Machado A, Chou R, Riba J (2008) CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265(3):422–428. https://doi.org/10.1016/j.wear.2007.11.013

    Article  Google Scholar 

  128. Zhang D, Li C, Jia D, Zhang Y, Zhang X (2015) Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding. Chin J Aeronaut 28(2):570–581. https://doi.org/10.1016/j.cja.2014.12.035

    Article  Google Scholar 

  129. Rahim EA, Sasahara H (2011) A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys. Tribol Int 44(3):309–317. https://doi.org/10.1016/j.triboint.2010.10.032

    Article  Google Scholar 

  130. Lawal SA, Choudhury IA, Nukman Y (2014) Evaluation of vegetable and mineral oil-in-water emulsion cutting fluids in turning AISI 4340 steel with coated carbide tools. J Clean Prod 66:610–618. https://doi.org/10.1016/j.jclepro.2013.11.066

    Article  Google Scholar 

  131. Zhang X, Li C, Zhang Y, Wang Y, Li B, Yang M, Guo S, Liu G, Zhang N (2017) Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation. Precis Eng 47:532–545. https://doi.org/10.1016/j.precisioneng.2016.09.016

    Article  Google Scholar 

  132. Wang Y, Li C, Zhang Y, Yang M, Li B, Jia D, Hou Y, Mao C (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. J Clean Prod 127:487–499. https://doi.org/10.1016/j.jclepro.2016.03.121

    Article  Google Scholar 

  133. Thottackkad MV, Perikinalil RK, Kumarapillai PN (2012) Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles. Int J Precis Eng Manuf 13(1):111–116. https://doi.org/10.1007/s12541-012-0015-5

    Article  Google Scholar 

  134. Huang S, Lv T, Wang M, Xu X (2018) Effects of machining and oil mist parameters on electrostatic minimum quantity lubrication–EMQL turning process. Int J Precis Eng Manuf Green Technol 5(2):317–326. https://doi.org/10.1007/s40684-018-0034-5

    Article  Google Scholar 

  135. Nguyen TK, Do I, Kwon P (2012) A tribological study of vegetable oil enhanced by nano-platelets and implication in MQL machining. Int J Precis Eng Manuf 13(7):1077–1083. https://doi.org/10.1007/s12541-012-0141-0

    Article  Google Scholar 

  136. Naskar A, Singh BB, Choudhary A, Paul S (2018) Effect of different grinding fluids applied in minimum quantity cooling-lubrication mode on surface integrity in cBN grinding of inconel 718. J Manuf Process 36:44–50. https://doi.org/10.1016/j.jmapro.2018.09.023

    Article  Google Scholar 

  137. Sinha MK, Madarkar R, Ghosh S, Rao PV (2017) Application of eco-friendly nanofluids during grinding of Inconel 718 through small quantity lubrication. J Clean Prod 141:1359–1375. https://doi.org/10.1016/j.jclepro.2016.09.212

    Article  Google Scholar 

Download references

Funding

It is certified that we have not received any funding from any agency for carrying out present research work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally participated and worked as a team to complete this research study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Roshan Lal Virdi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Technical Editor: Marcelo Areias Trindade.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virdi, R.L., Pal, A., Chatha, S.S. et al. A review on minimum quantity lubrication technique application and challenges in grinding process using environment-friendly nanofluids. J Braz. Soc. Mech. Sci. Eng. 45, 238 (2023). https://doi.org/10.1007/s40430-023-04159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04159-0

Keywords

Navigation