Skip to main content

Advertisement

Log in

Implementation of an unresolved stabilised FEM–DEM model to solve immersed granular flows

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an unresolved computational fluid dynamic–discrete element method (CFD–DEM) model for the simulation of flows mixing fluid and grains. The grains trajectories are solved at a fine scale using a discrete element method. It provides the velocities and the trajectories of the grains with an accuracy that is needed to describe microscopic phenomena like clogging in pipe happening in these flows. Solved at a coarse scale using the finite element method, the fluid motion is deduced from a mean continuous representation of the fluid phase giving computational performance and keeping variables evolutions that are of interest for a lot of simulation processes. The key point of this method lays in the coupling of the two different representation scales. An empirical drag formula for monodisperse granular media parametrises the transfer of momentum between the phases. Applying this model to the well-known problem of suspension drops provides validation and insight in this kind of methodology. Simulations in which inertia is non-negligible are achieved to prove the generality and adaptability of the unresolved CFD–DEM model compared to other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abade G, Cunha F (2007) Computer simulation of particle aggregates during sedimentation. Comput Methods Appl Mech Eng 196(45):4597–4612

    Article  MATH  Google Scholar 

  2. Adachi K, Kiriyama S, Yoshioka N (1978) The behavior of a swarm of particles moving in a viscous fluid. Chem Eng Sci 733:115–121

    Article  Google Scholar 

  3. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems Prone to Newton like solution methods. Comput Methods Appl Mech Eng 92:353–375. https://doi.org/10.1016/0045-7825(91)90022-X

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson T, Jackson R (1968) A fluid mechanical description of fluidized beds: stability of the uniform state of fluidization. I&EC Fundam 7:12–21

    Article  Google Scholar 

  5. Babuska I (1973) The finite element method with lagrangian multipliers. Numer Math 20(3):179–192

    Article  MathSciNet  MATH  Google Scholar 

  6. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  7. Batchelor GK (1972) Sedimentation in a dilute dispersion of spheres. J Fluid Mech 52(2):245–268. https://doi.org/10.1017/S0022112072001399

    Article  MATH  Google Scholar 

  8. Bosse T, Kleiser L, Härtel C, Meiburg E (2005) Numerical simulation of finite Reynolds number suspension drops settling under gravity. Phys Fluids 17(3):037101

    Article  MATH  Google Scholar 

  9. Bouillard J, Gidaspow D, Lyczkowski R (1991) Hydrodynamics of fluidization: fast-bubble simulation in a two-dimensional fluidized bed. Powder Technol 66(2):107–118

    Article  Google Scholar 

  10. Brezzi F, Douglas J (1988) Stabilized mixed method for Stokes problem. Numer Math 53:225–235

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezzi F, Pitkaranta J (1984) On the stabilization of the finite element approximations of the Stokes equations. In: Hackbush W (ed) Efficient solution of elliptic systems, vol 10. Vieweg, Braunschweig, pp 11–19

    Chapter  Google Scholar 

  12. Brinkman HC (1947) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res A1:27–34

    MATH  Google Scholar 

  13. Bülow F, Nirschl H, Dörfler W (2015) On the settling behaviour of polydisperse particle clouds in viscous fluids. Eur J Mech B/Fluids 50:19–26

    Article  MathSciNet  MATH  Google Scholar 

  14. Chu K, Wang B, Yu A, Vince A (2009) CFD–DEM modelling of multiphase flow in dense medium cyclones. Powder Technol 193(3):235–247. https://doi.org/10.1016/j.powtec.2009.03.015 (Special issue: Discrete element methods: the 4th international conference on discrete element methodsthe 4th international conference on discrete element methods, Brisbane, August 2007)

    Article  Google Scholar 

  15. Chu K, Yu A (2008) Numerical simulation of complex particle-fluid flows. Powder Technol 179(3):104–114. https://doi.org/10.1016/j.powtec.2007.06.017 (WCPT5Papers presented at the 5th world conference of particle technology (WCPT5), Orlando, Florida, April 23–27 20065th world conference of particle technology (WCPT5))

    Article  Google Scholar 

  16. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65

    Article  Google Scholar 

  17. DallaValle JM, Klemin A (1943) Micromeritics: the technology of the particles. Pitman Publishing Corporation, New York

    Book  Google Scholar 

  18. Di Renzo A, Di Maio FP (2007) Homogeneous and bubbling fluidization regimes in dem-cfd simulations: hydrodynamic stability of gas and liquid fluidized beds. Chem Eng Sci 62(1–2):116–130

    Article  Google Scholar 

  19. Dubois F, Acary V, Jean M (2018) The contact dynamics method: a nonsmooth story. Comptes Rendus Mécanique 346(3):247–262. https://doi.org/10.1016/j.crme.2017.12.009

    Article  Google Scholar 

  20. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94

    Google Scholar 

  21. Felice RD (1994) The voidage function for fluid–particle interaction systems. Int J Multiph Flow 20(1):153–159

    Article  MATH  Google Scholar 

  22. Feng Y, Yu A (2004) Assessment of model formulations in the discrete particle simulation of gas–solid flow. Ind Eng Chem Res 43(26):8378–8390

    Article  Google Scholar 

  23. Galindo-Torres S (2013) A coupled discrete element lattice boltzmann method for the simulation of fluid–solid interaction with particles of general shapes. Comput Methods Appl Mech Eng 265:107–119

    Article  MathSciNet  MATH  Google Scholar 

  24. Geuzaine C, Remacle JF (2009) Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  MathSciNet  MATH  Google Scholar 

  25. Gidaspow D (2012) Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic Press, London

    MATH  Google Scholar 

  26. Gupta P (2015) Verification and validation of a DEM-CFD model and multiscale modelling of cohesive fluidization regimes. Ph.D. thesis, The University of Edinburgh

  27. Ho T, Phan-Thien N, Khoo B (2016) Destabilization of clouds of monodisperse and polydisperse particles falling in a quiescent and viscous fluid. Phys Fluids 28(6):063305

    Article  Google Scholar 

  28. Hoomans BPB, Kuipers JAM, Briels WJ, van Swaaij WPM (1996) Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chem Eng Sci 51(1):99–118

    Article  Google Scholar 

  29. Hu HH (1996) Direct simulation of flows of solid–liquid mixture. Int J Multiph Flow 22(2):335–352

    Article  MathSciNet  MATH  Google Scholar 

  30. Hughes TJR, Franca LP (1986) A new finite element formulation for computational fluid dynamics: V. Circumeventing the Babuska–Brezzi condition: a stable petrov-galerking formulation of the stokes problem accomodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99

    Article  MATH  Google Scholar 

  31. Jackson R (1997) Locally averaged equations of motion for a mixture of identical spherical particles and a newtonian fluid. Chem Eng Sci 52(15):2457–2469. https://doi.org/10.1016/S0009-2509(97)00065-1 (Mathematical modelling of chemical and biochemical processes)

    Article  Google Scholar 

  32. Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177(3–4):235–257

    Article  MathSciNet  MATH  Google Scholar 

  33. Jean M, Moreau J (1992) Unilaterality and dry friction in the dynamics of rigid body collections. In: Proceedings of contact mechanics international symposium, vol 1, pp 31–48

  34. Jourdan F, Alart P, Jean M (1998) A Gauss–Seidel like algorithm to solve frictional contact problems. Comput Methods Appl Mech Eng 155:31–47. https://doi.org/10.1016/S0045-7825(97)00137-0

    Article  MathSciNet  MATH  Google Scholar 

  35. Kafui K, Thornton C, Adams M (2002) Discrete particle-continuum fluid modelling of gas–solid fluidised beds. Chem Eng Sci 57(13):2395–2410

    Article  Google Scholar 

  36. Ladyshenskaya OA (1969) The mathematical theory of viscous incompressible flow. Gordon and Breach, New York

    Google Scholar 

  37. Lamb H (1932) Hydrodynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  38. Landau LD, Lifshitz EM (1987) Course of theoretical physics. In: Fluid mechanics, vol 6, 2nd edn. Pergamon Press, pp. 336–343

  39. Li J, Kuipers JAM (2003) Gas–particle interactions in dense gas-fluidized beds. Chem Eng Sci 58(3–6):711–718

    Article  Google Scholar 

  40. Lin Y, Tan JH, Phan-Thien N, Khoo BC (2017) Settling of particle-suspension drops at low to moderate Reynolds numbers. Eur J Mech B/Fluids 61:72–76

    Article  MathSciNet  MATH  Google Scholar 

  41. Machu G, Meile W, Nitsche LC, Schaflinger U (2001) Coalescence, torus formation and break-up of sedimenting clouds: experiments and computer simulations. J Fluid Mech 447:299–336

    Article  MATH  Google Scholar 

  42. McNamara S, Young WR (1992) Inelastic collapse and clumping in a one-dimensional granular medium. Phys Fluids A Fluid Dyn 4(3):496–504

    Article  Google Scholar 

  43. Metzger B, Nicolas M, Guazzelli E (2007) Falling clouds of particles in viscous fluids. J Fluid Mech 580:283–301

    Article  MATH  Google Scholar 

  44. Mylyk A, Meile W, Brenn G, Ekiel-Jeżewska M (2011) Break-up of suspension drops settling under gravity in a viscous fluid close to a vertical wall. Phys Fluids 23(6):063302

    Article  Google Scholar 

  45. Nguyen NQ, Ladd A (2002) Lubrication corrections for Lattice–Boltzmann simulations of particle suspensions. Phys Rev E 66(4):046708

    Article  Google Scholar 

  46. Nitsche JM, Batchelor GK (1997) Break-up of a falling cloud containing dispersed particles. J Fluid Mech 340:161–175

    Article  MathSciNet  MATH  Google Scholar 

  47. Patankar S (1980) Numerical heat transfer and fluid flow. CRC Press, Boca Raton

    MATH  Google Scholar 

  48. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MathSciNet  MATH  Google Scholar 

  49. Pignatel F, Nicolas M, Guazzelli E (2011) A falling cloud of particles at a small but finite Reynolds number. J Fluid Mech 671:34–51

    Article  MATH  Google Scholar 

  50. Pritchett J, Blake T, Garg S (1978) A numerical model of gas fluidized beds. In: AIChE symposium series, vol 74, p 134

  51. Renouf M, Dubois F, Alart P (2004) A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media. J Comput Appl Math 168:375–382. https://doi.org/10.1016/j.cam.2003.05.019 (Selected papers from the second international conference on advanced computational methods in engineering (ACOMEN 2002))

    Article  MathSciNet  MATH  Google Scholar 

  52. Richardson J, Zaki W (1954) The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem Eng Sci 3(2):65–73. https://doi.org/10.1016/0009-2509(54)85015-9

    Article  Google Scholar 

  53. Rzadkiewicz SA, Mariotti C, Heinrich P (1996) Modelling of submarines landslides and generated water waves. Phys Chem Earth 21(1–2):1–12

    Google Scholar 

  54. Sanchez PJ, Sonzogni VE, Huespe AE (2008) Study of a stabilized mixed finite element with emphasis on its numerical performance for strain localization problems. Int J Numer Methods Biomed Eng 24(4):297–320

    MathSciNet  MATH  Google Scholar 

  55. Subramanian G, Koch DL (2008) Evolution of clusters of sedimenting low-Reynolds-number particles with oseen interactions. J Fluid Mech 603:63–100

    Article  MathSciNet  MATH  Google Scholar 

  56. Taghipour F, Ellis N, Wong C (2005) Experimental and computational study of gas–solid fluidized bed hydrodynamics. Chem Eng Sci 60(24):6857–6867

    Article  Google Scholar 

  57. Tezduyar TE (1991) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44

    Article  MathSciNet  MATH  Google Scholar 

  58. Tezduyar TE, Mittal S, Ray S, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95(2):221–242

    Article  MATH  Google Scholar 

  59. Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two dimensional fluidized bed. Powder Technol 77(1):79–87

    Article  Google Scholar 

  60. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71(3):239–250. https://doi.org/10.1016/0032-5910(92)88030-L

    Article  Google Scholar 

  61. van Wachem B, Almstedt A (2003) Methods for multiphase computational fluid dynamics. Chem Eng J 96(13):81–98. https://doi.org/10.1016/j.cej.2003.08.025 (Festschrift Prof. Cor M. van den Bleek)

    Article  Google Scholar 

  62. Wen CY, Yu HY (1966) Chemical engineering progress symposium series. Mech Fluid 62:100–111

    Google Scholar 

  63. Xu BH, Yu AB (1997) Numerical simulation of the gas–solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem Eng Sci 52(16):2785–2809

    Article  Google Scholar 

  64. Yu A, Xu B (2003) Particle-scale modelling of gas–solid flow in fluidisation. J Chem Technol Biotechnol 78(2–3):111–121

    Article  Google Scholar 

  65. Zhang J, Fan LS, Zhu C, Pfeffer R, Qi D (1999) Dynamic behaviour of collision of elastic spheres in viscous fluids. Powder Technol 106(1–2):98–109

    Article  Google Scholar 

  66. Zhang P, Galindo-Torres S, Tang H, Jin G, Scheuermann A, Li L (2017) An efficient discrete element lattice Boltzmann model for simulation of particle–fluid, particle–particle interactions. Comput Fluids 147:63–71

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhong W, Yu A, Zhou G, Xie J, Zhang H (2016) CFD simulation of dense particulate reaction system: approaches, recent advances and applications. Chem Eng Sci 140:16–43. https://doi.org/10.1016/j.ces.2015.09.035

    Article  Google Scholar 

  68. Zhu HP, Zhou ZY, Yang RY, Yu AB (2007) Discrete particle simulation of particulate system: theoretical developments. Chem Eng Sci 62(13):3378–3396

    Article  Google Scholar 

Download references

Acknowledgements

Matthieu Constant is a Research Fellow with the Belgium Fund for Research in Industry and Agriculture (FRIA).

Funding

This study was funded by the F.R.S.-FNRS through a FRIA Grant (29627518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Constant.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constant, M., Dubois, F., Lambrechts, J. et al. Implementation of an unresolved stabilised FEM–DEM model to solve immersed granular flows. Comp. Part. Mech. 6, 213–226 (2019). https://doi.org/10.1007/s40571-018-0209-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-018-0209-4

Keywords

Navigation