Skip to main content
Log in

A nonlinear elliptic boundary value problem relevant in general relativity and in the theory of electrical heating of conductors

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

The elliptic boundary value problem governing the steady electrical heating of a conductor of heat and electricity, the so-called thermistor problem,

$$\begin{aligned}&{\nabla }\cdot ({\sigma }(u){\nabla }\phi )=0\ {\quad \hbox {in}\ {\Omega }}\quad \phi =\phi _b\ {\quad \hbox {on}\ {\Gamma }}\\&{\nabla }\cdot ({\kappa }(u){\nabla }u)=-{\sigma }(u)|{\nabla }\phi |^2\ {\quad \hbox {in}\ {\Omega }}\quad u=0\ {\quad \hbox {on}\ {\Gamma }}, \end{aligned}$$

where \({\sigma }(u)\) is the temperature dependent electric conductivity and \({\kappa }(u)\) the thermal conductivity, admits a reinterpretation in the framework of general relativity if we choose \({\sigma }(u)=e^u\), \({\kappa }(u)=1\) and, in addition, \({\Omega }\) is a domain of \({\mathbf{R}^3}\) axially symmetric whereas the function \(\phi _b\), in a cylindrical coordinate system \({\rho },z,{\varphi }\), is independent of \({\varphi }\). The same analytical methods relevant in the thermistor problem can be used in this new context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the Einstein equations we assume \(\frac{k}{c^4}=1\) (k gravitational constant).

  2. The semicolon denotes the covariant differentiation.

  3. A physically realistic situation could be to assume the boundary of \({\Omega }\) divided into two disjoint parts \({\Gamma }_1\) and \({\Gamma }_2\) representing the electrodes of the device.

  4. This assumption is not restrictive since the electric potential \(\phi \) is defined apart an arbitrary constant.

  5. But not identical, in view of the different form of the operators entering in (4.1), (4.2).

  6. If the two constants are equal the problem has only the trivial solution.

  7. This is of course the key point, see for the proof [5].

  8. Note that \(\Psi (\phi )\) can be written down explicitly.

References

  1. Antonsev, S.N., Chipot, M.: The thermistor problem: existence, smoothness, uniqueness, blowup. SIAM J. Math. 25, 1128–1156 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bicak, J.: Selected solutions of Einstein’s field equations: their role in general relativity and astrophysics. In: Schmidt, B.G. (ed.) Einstein’s field equations and their physical implications, Lecture Notes in Physics. Springer, Berlin (2000)

    Google Scholar 

  3. Cimatti, G.: A boundary value problem for a nonlinear elliptic system relevant in general relativity. JEPE 2, 217–233 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Cimatti, G., Prodi, G.: Existence results for a nonlinear elliptic system modelling a temperature dependent resistor. Ann. Mat. Pura Appl. (IV) 152, 227–236 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cimatti, G.: Remark on existence and uniqueness for the thermistor problem. Q. Appl. Math. 47, 117–121 (1989)

    Article  MATH  Google Scholar 

  6. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  7. Gutiérrez-Piñeres, A.C., Gonzáles, G.A., Quevedo, H.: Conformastatic disk-haloes in Einstein-Maxwell gravity. Phys. Rev. D 87, 044010–1 (2013)

    Article  Google Scholar 

  8. Gutiérrez-Piñeres, A.C., López-Monsalvo, C.S.: A static axisymmetric exact solution of \(f(R)\)-gravity. Phys. Lett. B 718, 1493–1499 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gutiérrez-Piñeres, A.C., Ospina, P.A.: Finite axisymmetric charged dust disks in conformastatic spacetimes (2008). arXiv:0806.4285v1 [gr-qc]

  10. Howison, S.D., Rodrigues, J.F., Shillor, M.: Stationary solutions to the thermistor problem. JMAA 174, 573–588 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications. Academic, New York (1980)

    MATH  Google Scholar 

  12. Ladyzhenskaia, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic, New York (1964)

    Google Scholar 

  13. Landau, L., Lifchitz, E.: Théorie des Champs, Editions Mir, Moscou (1970)

  14. Lewis, T.: Some special solutions of the equations of axially symmetric gravitational fields. Proc. R. Soc. Lond. A 136, 176–192 (1932)

    Article  MATH  Google Scholar 

  15. Levi-Civita, T.: \(ds^2\) einsteniani in campi newtoniani. Rend. Acc. Lincei 26, 307–317 (1917)

    MATH  Google Scholar 

  16. Meyers, N.G.: An \(L^p\)-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 17, 189–206 (1963)

    MathSciNet  MATH  Google Scholar 

  17. Papapetrou, A.: Eine rotationssymmetrische Lösung in der Allgemeinen Relativitäts Theorie. Ann. Physik 12, 309–315 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  18. Papapetrou, A.: Champs gravitationelles stationnaries á symétrie axiale. Ann. Inst. Henry Poincaré 4, 83–105 (1966)

    Google Scholar 

  19. Weyl, H.: Zur Gravitationstheorie. Ann. Phys. 54, 117–145 (1917)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Cimatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cimatti, G. A nonlinear elliptic boundary value problem relevant in general relativity and in the theory of electrical heating of conductors. Boll Unione Mat Ital 11, 191–204 (2018). https://doi.org/10.1007/s40574-017-0121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-017-0121-5

Keywords

Mathematics Subject Classification

Navigation