Skip to main content

Advertisement

Log in

Groundwater Management Based on Vulnerability to Contamination in the Tropical Karst Region of Guntur Spring, Gunungsewu Karst, Java Island, Indonesia

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the most suitable groundwater vulnerability method and formulate karst groundwater vulnerability management based on the distribution of the resulting vulnerability class. The most suitable groundwater vulnerability method was selected with a tracer test as well as by analysing its compatibility with the conditions of the study site, distribution of the vulnerability classes, spatial autocorrelation and comparison with other studies. The study was conducted on Guntur Spring, which is one of the tropical karst springs located in the western region of Gunungsewu Karst, Java Island, Indonesia. This perennial spring is used by approximately 1,000 people. This spring has the potential to be polluted due to the characteristics of the catchment area, which typify the connectivity between the surface and subsurface flow systems. The management of the Guntur Spring catchment was based on the distribution of vulnerability classes that are also adapted to the geomorphological, hydrogeological and land-use conditions. The analysis showed that EPIK is the most suitable method compared with COP, PI and PaPRIKa. The recommended management of the karst groundwater vulnerability included: (1) creating a protective structure at swallow holes; (2) reforestation and erosion management of thin soils on the crest of the karst hill; (3) addition of multilayer vegetation coverage to the upper, middle and bottom layers of the cockpit karst; (4) land-use and fertiliser limitations in the karst valley; and (5) restrictions on land use that produces pollutants around the lineaments, underground rivers and recharge points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdullah TO, Ali SS, Al-Ansari NA, Knutsson S (2016) Groundwater vulnerability using DRASTIC and COP models: case study of Halabja Saidsadiq basin. Iraq Eng 8(11):741–760. https://doi.org/10.4236/eng.2016.811067

    Article  Google Scholar 

  • Adji TN (2011) Upper catchment of Bribin underground river hydrogeochemistry (Gunung Sewu karst, Gunung Kidul, Java, Indonesia). In: Proceeding Asian Trans-Disciplinary Karst Conference Yogyakarta-Indonesia

  • Adji TN, Haryono E, Fatchurohman H, Oktama R (2017a) Spatial and temporal hydrochemistry variations of karst water in Gunung Sewu, Java, Indonesia. Environ Earth Sci 76(20):1–16. https://doi.org/10.1007/s12665-017-7057-z

    Article  Google Scholar 

  • Adji TN, Haryono E, Mujib A, Fatchurohman H, Bahtiar IY (2017b) Assessment of aquifer karstification degree in some karst sites on Java Island, Indonesia. Carbonates Evaporites 34(1):53–66. https://doi.org/10.1007/s13146-017-0403-0

    Article  Google Scholar 

  • Afrasiabian A (2007) The importance of protection and management of karst water as drinking water resources in Iran. Environ Geol 52(4):673–677. https://doi.org/10.1007/s00254-006-0502-z

    Article  Google Scholar 

  • Aller L, Bennet T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Andreo B, Ravbar N, Vías JM (2008) Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeol J 17(3):749–758. https://doi.org/10.1007/s10040-008-0391-1

    Article  Google Scholar 

  • Bautista F, Palacio-Aponte G, Quintana P, Zink JA (2011) Spatial distribution and development of soils in tropical karst areas from the Pennisula of Yucatan, Mexico. Geomorphology 135(3–4):308–321. https://doi.org/10.1016/j.geomorph.2011.02.014

    Article  Google Scholar 

  • Berthelin R, Rinderer M, Andreo B, Baker A, Kilian D, Leonhardt G, Lotz A, Lichtenwoehrer K, Mudarra M, Padilla IY, Agreda FP, Rosolem R, Vale A, Hartmann A (2020) A soil moisture monitoring network to characterize karstc recharge and evapotranspiration at five site across the globe. Geosci Instrum Method Data Syst 9(1):11–23. https://doi.org/10.5194/gi-9-11-2020

    Article  Google Scholar 

  • BIG (2004) Landuse map of Dringgo sheet 1407–543. Geospatial Information Agency, Cibinong

    Google Scholar 

  • Boufekane A, Saighi O (2013) Assessment of groundwater pollution by nitrates using intrinsic vulnerability methods: a case study of the Nil valley groundwater (Jijel, North-East Algeria). Acad J 7(10):949–960. https://doi.org/10.5897/AJEST2013.1428

    Article  Google Scholar 

  • Brunsch A, Adji TN, Stoffe D, Ikhwan M, Oberle P, Nestmann F (2011) Hydrological assessment of a karst area in southern Java with respect to climate phenomena. In: Proceeding Asian Trans-Disciplinary Karst Conference 2011, Yogyakarta-Indonesia

  • Civita MV (2010) The combined approach when assessing and mapping groundwater vulnerability to contamination. J Water Resour Prot 1(2):14–28. https://doi.org/10.4236/jwarp.2010.21003

    Article  Google Scholar 

  • Civita M, De Maio M (2004) Assessing and mapping groundwater vulnerability to contamination: The Italian ”combined” approach. Geofís Int 43(4):513–532

    Google Scholar 

  • Daly D, Dassargues A, Drew D, Dunne S, Goldscheider N, Neale S, Popescu IC, Zwahlen F (2002) Main concepts of the “European Approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol J 2(10):340–345

    Article  Google Scholar 

  • Doerfliger N, Jeannin PY, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection area using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 2(39):165–176. https://doi.org/10.1007/s002540050446

    Article  Google Scholar 

  • Döll P, Fiedler K (2008) Global-scale modeling of groundwater recharge. Hydro Earth Syst Sci 12(3):863–885. http://www.hydrol-earth-syst-sci.net/12/863/2008/

  • Entezari M, Yamani M, Aghdam MJ (2016) Evaluation of intrinsic vulnerability, hazard and risk mapping for karst aquifer, Khorein aquifer, Kermanshah Province: a case study. Environ Earth Sci 75(5):435. https://doi.org/10.1007/s12665-016-5258-5

    Article  Google Scholar 

  • Farfàn-Gonzàlez H, Plagnes V (2013) First outcomes in the application of PaPRIKa method to assess aquifer vulnerability in tropical karst mountain: Santo Tomàs Watershed: Viñales National Park, Cuba. In: Farfàn-Gonzàlez H et al (eds) Management of water resources in protected areas. Springer, Verlag Berlin Heidelberg, pp 95–101

    Chapter  Google Scholar 

  • Ford D, Williams P (2007) Karst Hydrogeology and Geomorphology. Wiley, London

    Book  Google Scholar 

  • Friyansari E (2017) Kajian kerentanan intrinsik airtanah terhadap pencemaran di Karangmojo, Gunungkidul. Undergraduate thesis, Universitas Gadjah Mada, Yogyakarta (in Indonesian with English abstract)

  • Ghanem M, Ahmad W, Keilan Y, Sawaftah F (2017) Groundwater vulnerability assessment of central West Bank catchment using PI method. Environ Earth Sci 76(9):347. https://doi.org/10.1007/s12665-017-6681-y

    Article  Google Scholar 

  • Goldscheider N (2005) Karst groundwater vulnerability mapping: application of a new method in Swabian Alb, Germany. Hydrogeol J 13(4):555–564. https://doi.org/10.1007/s10040-003-0291-3

    Article  Google Scholar 

  • Goldscheider N (2019) A holistic approach to groundwater protection and ecosystem services in karst terrains. Carbonates Evaporites 34(4):1241–1249. https://doi.org/10.1007/s10040-003-0291-3

    Article  Google Scholar 

  • Goldscheider N, Drew D (2007) Method in Karst Hydrogeology. Taylor and Francis, London

    Google Scholar 

  • Goldscheider N, Klute M, Sturm S, Hotzl H (2000) The PI method - a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol 46(3):157–166

    Google Scholar 

  • Goldscheider N, Hötzl H, Fries W, Jordan P (2001) Validation of a vulnerability map (EPIK) with tracer tets. In: 7th Conference on Limestone Hydrology and Fissured Media, Besançon, September 2001. Sci Tech Environ Mém, pp 167–170

  • Goldscheider N, Meiman J, Pronk M, Smart C (2008) Tracer tests in karst hydrogeology and speleology. Int J Speleol 37(1):27–40. https://doi.org/10.5038/1827-806X.37.1.3

    Article  Google Scholar 

  • Goldscheider N, Chen Z, Auler AS, BakalowiczBroda S, Drew D, Hartmann J, Jiang G, Moosdorf N, Veni G (2020) Global distribution of carbonate rocks and karst water resources. Hydrogeol J. https://doi.org/10.1007/s10040-020-02139-5

    Article  Google Scholar 

  • Guo F, Yuan D, Qin Z (2009) Groundwater contamination in karst areas of southwestern China and recommended countermeasures. Acta Carstalogica 39(2):389–399. https://doi.org/10.3986/ac.v39i2.107

    Article  Google Scholar 

  • Hamdan I, Margane A, Ptak T, Wiegand B, Sauter M (2016) Groundwater vulnerability assessment for the karst aquifer of Tanour and Rasoun springs catchment area (NW-Jordan) using COP and EPIK intrinsic methods. Environ Earth Sci 75(23):1474. https://doi.org/10.1007/s12665-016-6281-2

    Article  Google Scholar 

  • Hamza MH, Maalej A, Ajmi M, Added A (2010) Validity of the vulnerability methods DRASTIC and SI applied by GIS technique to the study of diffuse agricultural pollution in two phreatic aquifers of a semi-arid region (northeast of Tunisia). AQUAmundi 1(9):057–064. https://doi.org/10.4409/Am-006-10-0009

    Article  Google Scholar 

  • Haryono E (2011) Introduction to Gunungsewu karst field guide of Asian trans-disciplinary karst conference. Karst Research Group, Universitas Gadjah Mada, Yogyakarta

  • Haryono E, Day M (2004) Landform differentiation within the Gunungkidul kegelkarst, Java, Indonesia. J Cave Karst Stud 66(2):62–69

    Google Scholar 

  • Haryono E, Danardono, Mulatsih S, Putro ST, Adji TN (2016) The nature of carbon flux in Gunungsewu Karst, Java-Indonesia. Acta Carsologica 45(1):173–185. https://doi.org/10.3986/ac.v45i2.4541

    Article  Google Scholar 

  • Huneau F, Jaunat J, Kavouri K, Plagnes V, Dörflinger N (2013) Intrinsic vulnerability mapping for small mountainous karst aquifers, implementation of the new PaPRIKa method to Western Pyrnees (France). Eng Geol 161:81–93. https://doi.org/10.1016/j.enggeo.2013.03.028

    Article  Google Scholar 

  • Indonesian Government Regulation (2001) Number 82, Concerning water quality management and water pollution control. Deputy Secretary of the Cabinet for Legal Affairs and Legislation, Jakarta

    Google Scholar 

  • Indonesian Ministry of Agriculture (2000) Soil map of the Surabaya sheet MB49. Center for Soil and Agriclimate Research, Bogor, Indonesia

  • Jiménez-Madrid A, Carrasco F, Martinez C, Gogu RC (2013) DRISTPI, a new groundwater vulnerability mapping method for use in karstic and non-karstic aquifers. Q J Eng Geol Hydrogeol 46(2):245–255. https://doi.org/10.1144/qjegh2012-038

    Article  Google Scholar 

  • Jiménez-Madrid A, Gogu R, Martinez-Navarrete C, Carrasco F (2019) Groundwater for human consumption in karst environment: vulnerability, protection, and management. In: Younos T, Schreiber M, Kosic Ficco K (eds) Karst Water Environment, The Handbook of Environmental Chemistry, pp 45–63

  • Kacaroglu F (1999) Review of groundwater pollution and protection in karst area. Water Air Soil Pollut 133(1):337–356. https://doi.org/10.1023/A:1005014532330

    Article  Google Scholar 

  • Kavouri K, Plagnes V, Tremoulet J, Dorfliger N, Rejiba F, Marchet P (2011) Paprika: a method for estimating karst resource and source vulnerability-application to the ouysse karst system (Southwest France). Hydrogeol J 19(2):339–353. https://doi.org/10.1007/s10040-010-0688-8

    Article  Google Scholar 

  • Kavouri KP, Karatzas GP, Plagnes V (2017) A coupled groundwater-flow-modelling and vulnerability-mapping methodology for karstic terrain management. Hydrogeol J 25:1301–1317. https://doi.org/10.1007/s10040-017-1548-6

    Article  Google Scholar 

  • Klimchouk A (2015) The karst paradigm: changes, trends, and perspective. Acta Carsologica 44(3):289–313. https://doi.org/10.3986/ac.v44i3.2996

    Article  Google Scholar 

  • Kovarik JL, van Beynen PE, Niedzielksi MA (2017) Groundwater vulnerability mapping for a sub-catchment of the Rio La Venta watershed, Chiapas, Mexico. Environ Earth Sci 76(23):797. https://doi.org/10.1007/s12665-017-7113-8

    Article  Google Scholar 

  • Kuaniansky EL, Weary DJ, Kaufmann JE (2016) The current status of mapping karst area and availability of public sinkhole-risk resources in karst terrains of the United States. Hydrogeol J 24(3):613–624. https://doi.org/10.1007/s10040-015-1333-3

    Article  Google Scholar 

  • Kurniawan IA, Adji TN, Nurkholis A, Haryono E, Fatoni H, Waskito WA, Cahyadi A, Agniy RF (2019) Karst aquifer response by time series analysis application in Jonggrangan karst, Java island, Indonesia. Environ Earth Sci 78(13):3–14. https://doi.org/10.1007/s12665-019-8386-x

    Article  Google Scholar 

  • Kusumayudha SB (2009) Detecting springs in the coastal area of the Gunungsewu karst terrain, Yogyakarta spesial province, Indonesia, using fractal geometry analysis. J Technol Sci 2(4):1–12. https://doi.org/10.12962/j20882033.v20i4.86

    Article  Google Scholar 

  • Lehmann H (1936) Morfologiche Studien auf Java. Gohr Abh 3, Stutgart

  • Li G, Goldscheider N, Fiel MS (2016) Modeling karst spring hydrograph recession based on head drop at sinkholes. J Hydrol 542:820–827. https://doi.org/10.1016/j.jhydrol.2016.09.052

    Article  Google Scholar 

  • Marin AI, Dorflinger N, Andreo B (2010) Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in the Lez karst system (Montpellier, south France). In: Andreo B, Carrasco F, Duran JJ, LaMoreaux JW (eds) Advances in Research in Karst Media. pp 329–334. https://doi.org/10.1007/978-3-642-12486-0_51

  • Marín AI, Dörflinger N, Andreo B (2012) Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in Mediterranean karst aquifers (France and Spain). Environ Erath Sci 65:2407–2421. https://doi.org/10.1007/s12665-011-1056-2

    Article  Google Scholar 

  • Marin AI, Andreo B, Mudarra M (2015) Vulnerability mapping and protection zoning of karst springs validation by multitracer tests. Sci Total Environ 532:435–446. https://doi.org/10.1016/j.scitotenv.2015.05.029

    Article  Google Scholar 

  • Mead DJ (2018) Protecting the karst Te Waikoropupū spring in New Zealand. Geologia Croatia 7(12):113–119. https://doi.org/10.4154/gc.2018.08

    Article  Google Scholar 

  • Moreno-Gómez M, Pacheco J, Stefan C (2018) Evaluating the applicability of Europan karst vulnerability assessment methods to the Yucatan karst, Mexico. Environ Earth Sci 77(19):682. https://doi.org/10.1007/s12665-018-7869-5

    Article  Google Scholar 

  • Moss P (2013) Recharge area delineations and hazard and vulnerability mapping in Perry Country, Missouri. Carbonates Evaporites 28:175–182. https://doi.org/10.1007/s13146-013-0129-6

    Article  Google Scholar 

  • Naufal M, Widyastuti M, Cahyadi A, Ramadhan F, Riyanto IA, An-Nisa KSA, Adji TN (2019) Temporal variations of baseflow contribution to epikarst spring discharge in Gunungsewu karst area, Indonesia. E3S Web of Conference 125, 01014. https://doi.org/10.1051/e3sconf/201912501014

  • Neukum C, Hötzl H, Himmelsbach T (2008) Validation of vulnerability mapping methods by field investigation and numerical modelling. Hydrogeol J 16(4):641–658. https://doi.org/10.1007/s10040-007-0249-y

    Article  Google Scholar 

  • Nguyet VTM, Goldscheider N (2006a) A simplified methodology for mapping groundwater vulnerability and contamination risk, and its first application in a tropical karst area, vietnam. Hydrogeol J 14(8):1666–1675. https://doi.org/10.1007/s10040-006-0069-5

    Article  Google Scholar 

  • Nguyet VTM, Goldscheider N (2006) Tracer test, hydrochemical and microbiologcal investigations as basis for groundwater protection in a remote tropical mountainous karst area, Vietnam . Hydrogeol J 14(7):1147–1159. https://doi.org/10.1007/s10040-006-0038-z

    Article  Google Scholar 

  • Nurkholis A, Adji TN, Haryono E, Cahyadi A, Suprayogi S (2019) Time series analysis application for karst aquifer characterization in pindul cave karst system, Indonesia. Acta Carsologica 48(1):69–84. https://doi.org/10.3986/ac.v48i1.6745

    Article  Google Scholar 

  • Ollivier C, Chalikakis K, Mazzilli N, Kazakis N, Lecomte Y, Danquigny C, Emblanch C (2019) Challenges and limitation of karst aquifer vulnerability mapping based on PaPRIKa method-application to a large European Karst Auifer (Fontaine de Veclue, France). Environments 6(39):1–13. https://doi.org/10.3390/environments6030039

    Article  Google Scholar 

  • Pannekoek AJ (1949) Outline of the geomorphology of Java. S.I Publisher, Leiden

    Google Scholar 

  • Pereira DL, Galvȁo P, Lucon T, Fujaco MA (2019) Adapting the EPIK method to Brazilian hydro(geo)logical context of the Sȁo Miguel Watershed to assess karstic aquifer vulnerability to contamination. J S Am Earth Sci 90:191–203. https://doi.org/10.1016/j.jsames.2018.12.011

    Article  Google Scholar 

  • Petrič M (2019) The use of artificial tracer test in the process of management of karst water resources in Slovenia. In: Younos T et al. (ed) Karst Water Environment, The Handbook of Environmental Chemistry. Springer, Cham, pp 133–156. https://doi.org/10.1007/978-3-319-77368-1_5

  • Pochon A, Tripet J, Kozel R, Meyla B, Sinreich M, Zwahlen F (2008) Groundwater protection in fractured media: a vulnerability-based approach for delineating protection zones in Switzerland. Hydrogeol J 16(7):1267–1281. https://doi.org/10.1007/s10040-008-0323-0

    Article  Google Scholar 

  • Polemio M, Casarano D, Limoni PP (2009) Karstic aquifer vulnerability assessment methods and result at a test site (Apilia, southern Italy). Nat Hazards Earth Syst Sci 9(4):1461–1470. https://doi.org/10.5194/nhess-9-1461-2009

    Article  Google Scholar 

  • Rahardjo W, Sukandarrumidi, Rosidi HMD (1995) Geological map of the Yogyakarta sheet, Java. Geological Research and Development Centre, Bandung

  • Rahmawati N (2019) Karakterisasi akuifer karst atas dasar sifat aliran dan respon debit mataair Guntur, Girijati, Purwosari, Gunungkidul, DIY. Undergraduate thesis, Universitas Gadjah Mada, Yogyakarta (in Indonesian with English abstract)

  • Ramadhan F, Widyastuti M, Adji TN, Cahyadi A, Naufal M, Riyanto IA (2020) Characterizing flow release from the aquifer of Guntur Spring in Gunungsewu Karst Area, Indonesia. IOP Conf Ser Earth Environ Sci 451:012060. https://doi.org/10.1088/1755-1315/451/1/012060

    Article  Google Scholar 

  • Ravbar N (2007) The protection of karst waters. CIP-Katalozni Zapis O Publikaciji, Postojna-Ljubljana

    Google Scholar 

  • Ravbar N, Goldscheider N (2009) Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeol J 17(3):725–733. https://doi.org/10.1007/s10040-008-0368-0

    Article  Google Scholar 

  • Ravbar N, Kovacic G (2015) Vulnerability and protection aspect of some Dinaric karst aquifers: a synthesis. Environ Earth Sci 74(1):129–141. https://doi.org/10.1007/s12665-014-3945-7

    Article  Google Scholar 

  • Riyanto IA, Cahyadi A, Adji TN, Haryono E, Widyastuti M, Agniy RF, Fathoni WA, Rahmawati N, Baskoro H (2018) Analisis konektivitas dan karakterisasi pelorongan dengan uji perunutan pada mataair epikarst sub-sistem panggang, kawasan karst Gunungsewu. In: Prosiding Pekan Ilmiah Tahunan Perhimpunan Ahli Airtanah Indonesia (PAAI) yang diselenggarakan di Hotel Aryaduta, Jakarta, 7–8 November 2018 (in Indonesian with English abstract)

  • Riyanto IA, Cahyadi A, Sismoyo D, Naufal M, Ramadhan F, Widyastuti M, Adji TN (2019) Instalation of deep groundwater wells as solution to water resources problem in Panggang subsystem, Gunungsewu karst area, Indonesia. E3S Web of Conference 125, 01009. https://doi.org/10.1051/e3sconf/201912501009

  • Soldo B, Sivand SM, Afrasiabian A, Ɖurin B (2020) Effect of sinkholes on groundwater resources in arid and semiarid karst area in Abarkooh, Iran. Environments 7(26):1–16. https://doi.org/10.3390/environments7040026

    Article  Google Scholar 

  • Stevanović Z (2016) Creating environmental impact indicators in dynamic karst system-Dinaric karst case example. In: Stevanović Z et al (eds) Karst without Boundaries. CRC Press, New York, pp 287–310

  • Stigter TY, Ribeiro L, Dill AMMC (2006) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14(1):79–99. https://doi.org/10.1007/s10040-004-0396-3

    Article  Google Scholar 

  • Sweeting MM (1972) Karst Landform. MacMillan, London

  • van Bemmelen RW (1949) The geology of Indonesia, general geology of Indonesia and adjacent archioelagoes, 2nd edn. Elsevier, The Hague

    Google Scholar 

  • Verstappen HTh (2000) Outline of the geomorphology of Indonesia: a case study on tropical geomorphology of a tectigene region. ITC Publication, Enschede

    Google Scholar 

  • Vías JM, Andreo B, Perles MJ, Carrasco F (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeol J 14(6):912–925. https://doi.org/10.1007/s10040-006-0023-6

    Article  Google Scholar 

  • Vías JM, Andreo B, Hotzl H (2010) Mapping the vulnerability of groundwater to the contamination of four carbonate aquifers in Europe. J Environ Manag 91(7):1500–1510. https://doi.org/10.1016/j.jenvman.2010.02.025

    Article  Google Scholar 

  • Vogelbacher A, Kazakis N, Voudouris K, Bold S (2019) Groundwater vulnerability and risk assessment in a karst aquifer of Greece using EPIK method. Environments 6(11):116. https://doi.org/10.3390/environments6110116

    Article  Google Scholar 

  • Vrba J, Zaporozec A (1994) Guidebook on Mapping Groundwater Vulnerability. International Association of Hydrogeologist, Hannover

    Google Scholar 

  • Widyastuti M, Sudarmadji S, Sutikno S, Hendrayana H (2012) Kerentanan airtanah terhadap pencemaran daerah imbuhan ponor di karst Gunung Sewu (studi di daerah aliran sungai bawah tanah Bribin). J Manusia dan Lingkungan 19(2):128–142. https://doi.org/10.22146/jml.18529 (in Indonesian with English abstract)

    Article  Google Scholar 

  • Widyastuti M, Riyanto IA, Naufal M, Ramadhan F, Rahmawati N (2019) Water catchment area analysis of Guntur karst spring. IOP Conf Ser Earth Environ Sci 256:012008. https://doi.org/10.1088/1755-1315/256/1/012008

    Article  Google Scholar 

  • Wiyono, Siradz SA, Hanudin E (2006) Aplikasi soil taxonomy pada tanah-tanah yang berkembang dari bentukan karst Gunung Kidul. Jurnal Ilmu Tanah dan Lingkungan 6(1):13–26 (in Indonesian with English abstract)

  • Wredaningrum I, Sudibyakto (2014) Analisis perubahan zona agroklimat daerah istimewa yogyakarta ditinjau dari klasifikasi iklim menurut oldeman. Jurnal Bumi Indonensia 3(4):1–10 (in Indonesian with English abstract)

  • Zhang Q (2015) An assessment of groundwater resource vulnerability to pollution in the Jiangjia spring basin, China. Environ Earth Sci 74(2):985–995. https://doi.org/10.1007/s12665-014-3732-5

    Article  Google Scholar 

  • Zhou WZ, Beck BF (2011) Engineering issues on karst. In: van Beynen PE (ed) Karst Management. Springer, New York, pp 9–45

  • Živanović V (2015) Delineation of karst groundwater protection zones. In: Stevanović Z (ed) Karst Aquifer Characterization and Engineering. Springer, New York, pp 625–631

  • Zwahlen F (ed) (2004) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report (COST Action 620). European Commission, Brussels

Download references

Acknowledgements

This research was funded by Hibah PDUPT Kemenristekdikti, Indonesia (scheme no. 2536/UN1.DITLIT/DIT-LIT/LT/2019) and Hibah RTA (scheme no. 2127/UN1/DITLIT/DIT-LIT/LT/2019). The authors would like to thank Novita Rahmawati, Aprilia Nur Widiastuti, Muhammad Naufal and Fajri Ramadhan for their assistance in the collection of the field-monitoring data. The authors also would like to thank the government of the sub-village of Dringo, Girijati Village, Purwosari Sub-District for providing support in and permission to conduct this research. The authors would also like to thank the blind reviewers for their input on the improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjahyo Nugroho Adji.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riyanto, I.A., Widyastuti, M., Cahyadi, A. et al. Groundwater Management Based on Vulnerability to Contamination in the Tropical Karst Region of Guntur Spring, Gunungsewu Karst, Java Island, Indonesia. Environ. Process. 7, 1277–1302 (2020). https://doi.org/10.1007/s40710-020-00460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-020-00460-5

Keywords

Navigation