Skip to main content
Log in

New Jacobi Elliptic Solutions and Other Solutions in Optical Metamaterials Having Higher-Order Dispersion and Its Stability Analysis

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the nonlinear Schrödinger equation in metamaterials having cubic-quintic nonlinearity with third and fourth order dispersions. Two effective techniques, namely, the new extended auxiliary equation method and the extended Kudryashov method are utilized to find the Jacobi elliptic functions solutions and other solutions to this model. The Jacobi elliptic functions solutions are degenerated to bright, dark, singular, and periodic solitary wave solutions. In addition, the condition for the modulational instability of continuous wave solutions for the equation is generated. The characteristics of the obtained solitons are analyzed via several 3D and 2D graphics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Hubert, M.B., Nestor, S., Betchewe, G., Biswas, A., Khan, S., Doka, S.Y., Zhou, Q., Ekici, M., Belic, M.: Dispersive solitons in optical metamaterials having parabolic form of nonlinearity. Optik 179, 1009–1018 (2019)

    Article  Google Scholar 

  2. Xiang, Y., Dai, X., Wen, S., Guo, J., Fan, D.: Controllable Raman soliton self frequency shift in nonlinear metamaterials. Phys. Rev. A 84(3), 033815 (2011)

    Article  Google Scholar 

  3. Mathanaranjan, T., Kumar, D., Rezazadeh, H., Akinyemi, L.: Optical solitons in metamaterials having third and fourth order dispersions. Opt. Quant. Electron. 54(5), 271 (2022)

    Article  Google Scholar 

  4. Zayed, E.M.E., Alurrfi, K.A.E.: New extended auxiliary equation method and its applications to nonlinear Schrodinger-type equations. Optik 127, 9131–9151 (2016)

    Article  Google Scholar 

  5. Zayed, E.M., Shohib, R.M., Biswas, A., Ekici, M., Triki, H., Alzahrani, A.K., Belic, M.R.: Optical solitons with fiber Bragg gratings and dispersive reflectivity having parabolic-nonlocal combo nonlinearity via three prolific integration architectures. Optik 208, 164065 (2019)

    Article  Google Scholar 

  6. Zayed, E.M., Alngar, M.E., El-Horbaty, M., Biswas, A., Yıldırım, Y., Alshomrani, A.S., Belic, M.R.: Chirped and chirp-free optical solitons having generalized anticubic nonlinearity with a few cutting-edge integration technologies. Optik 206, 163745 (2019)

    Article  Google Scholar 

  7. Zayed, E.M., Alngar, M.E., El-Horbaty, M., Biswas, A., Alshomrani, A.S., Khan, S., Ekici, M., Triki, H.: Optical solitons in fiber Bragg gratings having Kerr law of refractive index with extended Kudryashov’s method and new extended auxiliary equation approach. Chin. J. Phys. 66, 187–205 (2020)

    Article  MathSciNet  Google Scholar 

  8. El-Borai, M.M., El-Owaidy, H.M., Ahmed, H.M., Arnous, A.H., Moshokoa, S., Biswas, A., Belic, M.: Topological and singular soliton solution to Kundu-Eckhaus equation with extended Kudryashov’s method. Optik 128, 57–62 (2017)

    Article  Google Scholar 

  9. Eslami, M., Rezazadeh, H.: The first integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mathanaranjan, T.: Exact and explicit traveling wave solutions to the generalized Gardner and BBMB equations with dual high-order nonlinear terms. Part. Diff. Equ. Appl. Math. 4, 100120 (2021)

    Google Scholar 

  11. Şenol, M., Iyiola, O.S., Daei Kasmaei, H., Akinyemi, L.: Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent–Miodek system with energy-dependent Schrödinger potential. Adv. Differ. Equ. 2019(1), 1–21 (2019)

    Article  MATH  Google Scholar 

  12. Mathanaranjan, T., Himalini, K.: Analytical solutions of the time-fractional non-linear Schrodinger equation with zero and non zero trapping potential through the Sumudu Decomposition method. J. Sci. Univ. Kelaniya 12, 21–33 (2019)

    Article  Google Scholar 

  13. Mathanaranjan, T., Vijayakumar, D.: Laplace decomposition method for time-fractional Fornberg-Whitham type equations. J. Appl. Math. Phys. 9, 260–271 (2021)

    Article  Google Scholar 

  14. Akinyemi, L., Şenol, M., Iyiola, O.S.: Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul. 182, 211–233 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zayed, E.M.E., Gepreel, K.A.: The \((G^{\prime }/G)\)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 50(1), 013502 (2009)

    Article  MathSciNet  Google Scholar 

  16. Mathanaranjan, T.: Solitary wave solutions of the Camassa-Holm-Nonlinear Schrödinger Equation. Results Phys. 19, 103549 (2020)

    Article  Google Scholar 

  17. Wazwaz, A.M.: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl. Math. Comput. 187, 1131–1142 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Mathanaranjan, T.: Soliton solutions of deformed nonlinear Schrödinger equations using Ansatz method. Int. J. Appl. Comput. Math. 7, 1–11 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mathanaranjan, T., Rezazadeh, H., Şenol, M., Akinyemi, L.: Optical singular and dark solitons to the nonlinear Schrödinger equation in magneto-optic waveguides with anti-cubic nonlinearity. Opt. Quant. Electron. 53, 1–16 (2021)

    Article  Google Scholar 

  20. Mathanaranjan, T.: New optical solitons and modulation instability analysis of generalized coupled nonlinear Schrodinger-KdV system. Opt. Quant. Electron. 54(6), 336 (2022)

    Article  Google Scholar 

  21. Liu, X., Zhang, H., Liu, W.: The dynamic characteristics of pure-quartic solitons and soliton molecules. Appl. Math. Model. 102, 305–312 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, T.Y., Zhou, Q., Liu, W.J.: Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers. Chin. Phys. B. 31(2), 020501 (2022)

    Article  Google Scholar 

  23. Ma, G., Zhao, J., Zhou, Q., Biswas, A., Liu, W.: Soliton interaction control through dispersion and nonlinear effects for the fifth-order nonlinear Schrödinger equation. Nonlinear Dyn. 106, 2479–2484 (2021)

    Article  Google Scholar 

  24. Ma, G., Zhou, Q., Yu, W., Biswas, A., Liu, W.: Stable transmission characteristics of double-hump solitons for the coupled Manakov equations in fiber lasers. Nonlinear Dyn. 106, 2509–2514 (2021)

    Article  Google Scholar 

  25. Yan, Y.Y., Liu, W.J.: Soliton rectangular pulses and bound states in a dissipative system modeled by the variable-coefficients complex cubic-quintic Ginzburg-Landau equation. Chin. Phys. Lett. 38(9), 094201 (2021)

    Article  Google Scholar 

  26. Wang, L., Luan, Z., Zhou, Q., Biswas, A., Alzahrani, A.K., Liu, W.: Bright soliton solutions of the (2+ 1)-dimensional generalized coupled nonlinear Schrödinger equation with the four-wave mixing term. Nonlinear Dyn. 104, 2613–2620 (2021)

    Article  Google Scholar 

  27. Wang, L., Luan, Z., Zhou, Q., Biswas, A., Alzahrani, A.K., Liu, W.: Effects of dispersion terms on optical soliton propagation in a lossy fiber system. Nonlinear Dyn. 104, 629–637 (2021)

    Article  Google Scholar 

  28. Mathanaranjan, T.: An effective technique for the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with different laws of nonlinearity. Comput. Methods Differ. Equ. 10(3), 701–715 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Zhao, Y.H., Mathanaranjan, T., Rezazadeh, H., Akinyemi, L., Inc, M.: New solitary wave solutions and stability analysis for the generalized (3 + 1)-dimensional nonlinear wave equation in liquid with gas bubbles. Results Phys. 43, 106083 (2022)

    Article  Google Scholar 

  30. Mathanaranjan, T.: Optical solitons and stability analysis for the new (3 + 1)-dimensional nonlinear Schrödinger equation. J. Nonlinear Opt. Phys. Mater. 32(2), 2350016 (2023)

    Article  Google Scholar 

  31. Agrawal, G.P.: Nonlinear fiber optics. Academic Press, New York (2013)

    MATH  Google Scholar 

  32. Liu, W., Zhang, Y.: Optical soliton solutions, explicit power series solutions and linear stability analysis of the quintic derivative nonlinear Schrodinger equation. Opt. Quant. Electron. 51, 1–13 (2019)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the following: study conception and design, mathematical analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to Thilagarajah Mathanaranjan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with regard to the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathanaranjan, T. New Jacobi Elliptic Solutions and Other Solutions in Optical Metamaterials Having Higher-Order Dispersion and Its Stability Analysis. Int. J. Appl. Comput. Math 9, 66 (2023). https://doi.org/10.1007/s40819-023-01547-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01547-x

Keywords

Navigation