Skip to main content
Log in

Study on the Acoustical Properties of Natural Jute Material by Theoretical and Experimental Methods for Building Acoustics Applications

  • Technical Note
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

Noise control treatment is essential to maintain a quiet and comfortable environment in buildings. In order to control noise, sound absorbing materials play a significant role. Nowadays, natural materials have gained importance in noise control field. In this study, acoustical characterization of a natural material jute is performed using experimental and numerical techniques. Normal incidence sound absorption coefficient and sound transmission loss of building materials using jute are predicted using the transfer matrix method. The theoretical and numerical predictions show a good match with the experimental data in the mid and high-frequency range of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. Mohanty, A.R., Fatima, S.: Biocomposites for Industrial Noise Control. In: Thakur, V.K., Kessler, M.R. (eds.) Green Biorenewable Biocomposites From Knowledge to Industrial Applications, pp. 220–261. CRC Press, Waretown, NJ (2015)

    Google Scholar 

  2. Fatima, S., Mohanty, A.R.: Acoustical and fire retardant properties of jute composite materials. Appl. Acoust. 72, 108–114 (2011)

    Article  Google Scholar 

  3. Fatima, S., Mohanty, A.R.: Noise control of home appliances- the green way. Noise and Vibration Worldwide. 26–34 (2012)

  4. Ersoy, S., Kucuk, H.: Investigation of industrial tea-leaf-fiber waste material for its sound absorption properties. Appl. Acoust. 70, 215–220 (2009)

    Article  Google Scholar 

  5. Oldham, D.J., Egan, C.A., Cookson, R.D.: Sustainable acoustic absorber from the biomass. Appl. Acoust. 72, 353–63 (2011)

    Google Scholar 

  6. Kucuk, M., Korkmaz, Y.: The effect of physical parameters on sound absorption properties of natural fiber mixed nonwoven composites. Text. Res. J. 82, 2043–2053 (2012)

    Article  Google Scholar 

  7. Thilagavathi, G., Pradeep, E., Kannaian, T., Sasikala, L.: Development of natural fiber nonwovens for applications as car interior for noise control. J. Ind. Text. 39, 267–278 (2010)

    Article  Google Scholar 

  8. Koruk, H., Genc, G.: Investigation of the acoustic properties of bio luffa fiber and composite materials. Mater. Lett. 157, 166–168 (2015)

    Article  Google Scholar 

  9. Berardi, U., Iannace, G.: Acoustic characterization of natural fibers for sound absorption applications. Build. Environ. 1–13 (2015)

  10. Yilmaz, N.D., Powell, N.B., Banks, L.P., Michelsen, S.: Multi-fiber needle-punched nonwoven composites: Effects of heat treatment on sound absorption performance. J. Ind. Text. 43(2), 231–246 (2013)

    Article  Google Scholar 

  11. Congyun, Z., Qibai, H.: A method for calculating the absorption coefficient of a multilayer absorbent using the electro-acoustic analogy. Appl. Acoust. 66, 879–887 (2005)

    Article  Google Scholar 

  12. Fouladi, M.H., Ayub, M., Nor, M.J.M.: Analysis of coir fiber acoustical characteristics. Appl. Acoust. 72, 35–42 (2011)

    Article  Google Scholar 

  13. Fouladi, M.H.: Nor, MJM., Ayub, M., Leman, Z.A. : Utilization of coir fiber in multilayer acoustic absorption panel. Appl. Acoust. 71, 241–249 (2010)

    Article  Google Scholar 

  14. Song, B.H., Bolten, J.S.: A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials. J. Acoust. Soc. Am. 107, 1131–1152 (2000)

    Article  Google Scholar 

  15. Lee, C.M., Wang, Y.S.: A prediction method for the acoustical properties of multilayered noise control materials in standing wave-duct systems. J. Sound Vib. 298, 350–365 (2006)

    Article  Google Scholar 

  16. Delany, M.E., Bazley, E.N.: Acoustical properties of fibrous absorbent materials. Appl. Acoust. 3, 105–116 (1970)

    Article  Google Scholar 

  17. Miki, Y.: Acoustical properties of porous materials - Modifications of Delany-Bazley models. J. Acoust. Soc. Jpn (E) 11, 19–24 (1990)

    Article  Google Scholar 

  18. Garai, M., Pompoli, F.: A simple empirical model of polyester fiber materials for acoustical applications. Appl. Acoust. 66, 1383–1398 (2005)

    Article  Google Scholar 

  19. Johnson, D.L., Koplik, J., Dashen, R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379–302 (1987)

    Article  MATH  Google Scholar 

  20. Allard, J.F., Champoux, Y.: New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am. 91, 3346–3353 (1992)

  21. Allard, J.F., Attala, N.: Propagation of sound in porous media: Modeling sound absorbing materials. John Wiley & Sons Ltd, (2009)

  22. Lee, F.C., Chen, W.H.: Acoustic transmission analysis of multilayer absorber from the biomass. J. Sound Vib. 278, 621–634 (2004)

    Google Scholar 

  23. Sanchis, E.J., Alcaraz, J.S., Borrell, J.M.G., Fernandez, J.A.: Experimental investigation and numerical simulation of the acoustic waves propagation in a standing wave tube: Testing with a sample of rock wool. Experimental Techniques. Soc. Experi. Mech. 37, 74–80 (2013)

    Google Scholar 

  24. Wang, Y., Zhang, C., Ren, L., Ichchou, M., Galland, M.R., Bareille, O.: Sound absorption of a new multi-layer absorber. Compo Str. 108, 400–408 (2014)

    Article  Google Scholar 

  25. Attenborough, K.: Models for the acoustical characteristics of air filled granular materials. Acta. Acust. 64, 27–30 (1993)

    Google Scholar 

  26. Bolton, S., Yoo, T., Olivion, O.: Measurement of normal incidence transmission loss and other acoustical properties of materials placed in a standing wave tube. Technical Review No. 1, B&K (2007)

  27. ISO, 10534-2: Acoustics- determination of sound absorption coefficient and impedance in impedance tubes. Transfer-function method (2009)

  28. ASTM standard. : Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method. ASTM standard E2611-09

  29. ISO 9053: Acoustics- materials for acoustical applications – determination of Airflow Resistance (1991)

  30. IS 5476-1986 (Indian standard): Glossary of terms relating to jute (First Revision) (1987)

  31. Oliva, D., Hongisto, V.: Sound absorption of porous materials – Accuracy of prediction methods. Appl. Acoust. 74, 1473–1479 (2013)

    Article  Google Scholar 

  32. Crocker, M.J.: Handbook of Noise and Vibration Control. John Wiley & Sons, New Jersey (2007)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritesh Vishwasrao Bansod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansod, P.V., Mittal, T. & Mohanty, A.R. Study on the Acoustical Properties of Natural Jute Material by Theoretical and Experimental Methods for Building Acoustics Applications. Acoust Aust 44, 457–472 (2016). https://doi.org/10.1007/s40857-016-0073-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-016-0073-4

Keywords

Navigation