Skip to main content
Log in

Inclusion Detection in Molten Aluminum: Current Art and New Avenues for In Situ Analysis

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In order for light metals to meet the demands for critical applications in the automotive and aerospace industries, tight control over the composition and cleanliness of the metal must be achieved before casting. Melt cleanliness manifests primarily in the amount of inclusions present. A review of the state of the art in detecting and quantifying solid particle inclusions is given. Quick analysis of melt composition and quality, carried out in situ, is of great value in casting operations. Such quick measurements in the liquid alleviate analyzing samples in the solid state and thus increase productivity. The use of laser-induced breakdown spectroscopy as a new tool for quantifying melt cleanliness in situ is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. S. Shivkumar, L. Wang, D. Apelian, Molten-metal processing of advanced cast-aluminum alloys. JOM 43(1), 26–32 (1991)

    Article  Google Scholar 

  2. S. Rawal, Metal-matrix composites for space applications. JOM 53(4), 14–17 (2001)

    Article  Google Scholar 

  3. M.M. Makhlouf, Aluminum melt preparation for high integrity die castings. Die Cast. Eng. 52(6), 18–23 (2008)

    Google Scholar 

  4. S.T. Johansen, S. Gradahl, O. Dahle, I.R. Johansen, in Light Metals 1996, ed. by W. Hale (TMS, Warrendale, PA, 1996), pp. 1027–1031

    Google Scholar 

  5. J. Campbell, The origin of Griffith cracks. Metall. Mater. Trans. B 42(6), 1091–1097 (2011)

    Article  Google Scholar 

  6. P. Pouly, E. Wuilloud, in Light Metals 1997, ed. by R. Huglen (TMS, Warrendale, PA, 1997), pp. 829–835

    Google Scholar 

  7. P.N. Crepeau, Molten aluminum contamination: gas, inclusions, and dross. Mod. Cast. 87(7), 39–41 (1997)

    Google Scholar 

  8. C.J. Siemensen, G. Berg, A survey of inclusions in aluminum. Aluminum 56, 340–355 (1980)

    Google Scholar 

  9. J. Campbell, Castings, 2nd edn. (Butterworth-Heinemann, Jordan Hill, 2003)

    Google Scholar 

  10. D. Doutre, B. Gariepy, J.P. Martin, G. Dube, in Essential Readings in Light Metals, vol. 3, ed. by J.F. Granfield, D.G. Eskin (Wiley, Hoboken, NJ, 2013), pp. 1179–1195

    Google Scholar 

  11. J. Campbell, Stop pouring, start casting. Int. J. Metalcast. 6(3), 7–18 (2012)

    Article  Google Scholar 

  12. K. Hoshino, T. Nishizaka, K. Kakimoto, T. Yoshida, in Light Metals 1996, ed. by W. Hale (TMS, Warrendale, PA, 1996), pp. 833–838

    Google Scholar 

  13. H.P. Krug, W. Schneider, in Light Metals 1998, ed. by B. Welch (TMS, Warrendale, PA, 1998), pp. 863–870

    Google Scholar 

  14. X. Wang, in Light Metals 1997, ed. by R. Huglen (TMS, Warrendale, PA, 1997), pp. 963–972

    Google Scholar 

  15. P. Bakke, J.A. Laurin, A. Provost, D.O. Karlsen, in Light Metals 1997, ed. by R. Huglen (TMS, Warrendale, PA, 1997), pp. 1019–1026

    Google Scholar 

  16. C.J. Siemensen, Sedimentation analysis of inclusions in aluminum and magnesium. Metall. Trans. B Process Metall. 12(4), 733–743 (1981)

    Article  Google Scholar 

  17. C.J. Siemensen, G. Strand, Analysis of inclusions in aluminum by dissolution of the samples in hydrochloric nitric-acid. Fresenius Z. Fur Anal. Chem. 308(1), 11–16 (1981)

    Article  Google Scholar 

  18. S. Makarov, D. Apelian, R. Ludwig, in Transactions of the One Hundred Third Annual Meeting of the American Foundrymen’s Society (AFS, Schaumburg, Il, 1998), pp. 727–735

  19. T. Gudmundsson, G. Saevarsdottir, T.I. Sigfusson, D.G. McCartney, in Light Metals 1997, ed. by R. Huglen (TMS, Warrendale, PA, 1997), pp. 851–855

    Google Scholar 

  20. L. Liu, F.H. Samuel, Effect of inclusions on the tensile properties of Al–7% Si–0.35% Mg (A356.2) aluminium casting alloy. J. Mater. Sci. 33(9), 2269–2281 (1998)

    Article  Google Scholar 

  21. D. Dispinar, C. Kahruman, J. Campbell, Shape Casting: 5th International Symposium (2014). doi:10.1002/9781118888100.ch21

  22. J.G. Kaufman, E.L. Rooy, The Influence and Control of Porosity and Inclusions in Aluminum Castings, Aluminum Alloy Castings: Properties, Processes, and Applications (ASM International, Materials Park, OH, 2004)

    Google Scholar 

  23. H.V. Atkinson, G. Shi, Characterization of inclusions in clean steels: a review including the statistics of extremes methods. Prog. Mater Sci. 48(5), 457–520 (2003)

    Article  Google Scholar 

  24. P.S. Mohanty, F.H. Samuel, J.E. Gruzleski, in Transactions of the 99th Meeting of the American Foundrymen’s Society (AFS, Schaumburg, Il, 1995), pp. 555–564

  25. P.S. Mohanty, F.H. Samuel, J.E. Gruzleski, in Proceedings of the International Symposium on Light Metals Processing and Applications, ed. by C. Bickert (Canadian Institute of Mining, Metallurgy, and Petroleum, Montreal, 1993), pp. 272–282.

  26. M. Di Sabatino, L. Arnberg, S. Rørvik, A. Prestmo, The influence of oxide inclusions on the fluidity of Al–7 wt% Si alloy. Mater. Sci. Eng., A 413–414, 272–276 (2005)

    Article  Google Scholar 

  27. Y.D. Kwon, Z.H. Lee, The effect of grain refining and oxide inclusion on the fluidity of Al–4.5 Cu–0.6 Mn and A356 alloys. Mater. Sci. Eng., A 360(1–2), 372–376 (2003)

    Article  Google Scholar 

  28. T.L. Buijs, D. Gagnon, C. Dupuis, in Light Metals (2014). doi:10.1002/9781118888438.ch169

    Google Scholar 

  29. ASTM International, E45-13, Standard test methods for determining the inclusion content of steel, (West Conshohocken, PA, 2013)

  30. R. Fritzsch, J.Y. Hwang, C. Bai, J. Carpenter, S.J. Ikhmayies, in Characterization of Minerals, Metals, and Materials 2013 (Wiley, New York, 2013), pp. 67–77

  31. P.J. Wray, O. Richmond, H.L. Morrison, Use of the Dirichlet tessellation for characterizing and modeling nonregular dispersions of second-phase particles. Metallography 16(1), 39–58 (1983)

    Article  Google Scholar 

  32. S. Poynton, M. Brandt, J. Grandfield, in Essential Readings in Light Metals, vol. 3, ed. by J.F. Granfield, D.G. Eskin (Wiley, Hoboken, NJ, 2013), pp. 1179–1195

    Google Scholar 

  33. M.B. Djurdevic, Z. Odanovic, J. Pavlovic-Krstic, Melt quality control at aluminum casting plants. Metall. Mater. Eng. 16(1), 63–76 (2010)

    Google Scholar 

  34. D. Neff, in Proceedings of the North American Die Casting Association Congress (NADCA, Arlington Heights, Il, 2002)

  35. E.W.J. Miller, M.P. Stephenson, J. Beech, A technique for the direct observation of alloy solidification. J. Phys. E Sci. Instrum. 8(1), 33 (1975)

    Article  Google Scholar 

  36. Anonymous, Digital radiography for aluminum castings, in Foundry Management and Technology (Penton Media, Inc., Cleveland, 2006), p. 15

  37. O. Lashkari, L. Yao, S. Cockcroft, D. Maijer, X-ray microtomographic characterization of porosity in aluminum alloy A356. Metall. Mater. Trans. A 40(4), 991–999 (2009)

    Article  Google Scholar 

  38. R.G. Maev, J.H. Sokolowski, H.T. Lee, E.Y. Maeva, A.A. Denissov, Bulk and subsurface structure analysis of the 319 aluminum casting using acoustic microscopy methods. Mater. Charact. 46(4), 263–269 (2001)

    Article  Google Scholar 

  39. F. Silva, J.J. Williams, B.R. Müller, M.P. Hentschel, N. Chawla, Three-dimensional microstructure visualization of porosity and Fe-rich inclusions in SiC particle-reinforced Al alloy matrix composites by X-ray synchrotron tomography. Metall. Mater. Trans. A 41(8), 2121–2128 (2010)

    Article  Google Scholar 

  40. T. Kundu, Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization (CRC Press, Boca Raton, 2003)

    Book  Google Scholar 

  41. T.L. Mansfield, Ultrasonic technology for measuring molten aluminum quality. J. Met. 34(9), 54–57 (1982)

    Google Scholar 

  42. R. Guthrie, M. Isac, In-situ sensors for liquid metal quality. High Temp. Mater. Process. 31(4–5), 633–643 (2012)

    Google Scholar 

  43. R.S. Young, D.E. Pitcher, Methods of and apparatus for testing molten metal, US Patent 3444726 (1969)

  44. M. Kurban, I.D. Sommerville, N.D.G. Mountford, P.H. Mountford, in Light Metals 2005, ed. by H. Kvande (TMS, Warrendale, PA, 2005), pp. 945–949

    Google Scholar 

  45. MetalVision Manufacturing Company Ltd, Offline Crucible Testing and Comparison with PoDFA ® Data. http://metalvision.ca/comparison.html. Accessed 28 July 2015

  46. Y. Ono, J.F. Moisan, C.K. Jen, Ultrasonic techniques for imaging and measurements in molten aluminum. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(12), 1711–1721 (2003)

    Article  Google Scholar 

  47. P.G. Enright, I.R. Hughes, A shop floor technique for quantitative measurement of molten metal cleanliness of aluminium alloys. Foundryman (UK) 89(11), 390–395 (1996)

    Google Scholar 

  48. D. Apelian, in Proceedings of the 3rd International Conference on Molten Aluminum Processing (AFS, Schaumburg, Il, 1992), pp. 1–15

  49. S.A. Levy, in Light Metals 1981, ed. by C.J. McMinn, E.M. Adkins, J.E. Andersen (Metallurgical Society of AIME, 1981), pp. 723–733

  50. D. Sampath, P.G.J. Flick, J. Pool, W. Boender, W. Van Rijswik, in Light Metals 1996, ed. by W. Hale (TMS, Warrendale, PA, 1996), pp. 817–821

    Google Scholar 

  51. D. Apelian, M. Makhlouf, High Integrity Aluminum Die Castings: Alloys, Processes, and Melt Preparation (NADCA, Wheeling, Il, 2006), pp. 118–119

  52. F.R. Mollard, J.E. Dore, W.S. Peterson, in Light Metals 1972, ed. by W.C. Rotsell (Metallurgical Society of AIME, 1972), pp. 483–501

  53. M. Iwatsuki, S. Nishida, T. Kitamura, Determination of inclusions in molten aluminum alloy by X-ray diffractometry after selective dissolution. Anal. Sci. 14(3), 617–619 (1998)

    Article  Google Scholar 

  54. R.I.L. Guthrie, D.A. Doutre, in International Seminar on Refining and Alloying of Liquid Aluminum and Ferro-Alloys, ed. by T.A. Engh, S. Lyng, H.A. Oye (Trondheim, 1985), pp. 147–163

  55. M. Badowski, M. Gokelma, J. Morscheiser, T. Dang, P. Le Brun, S. Tewes, in Light Metals (2015). doi:10.1002/9781119093435.ch162

    Google Scholar 

  56. D. Apelian, M. Makhlouf, Quality assurance methods, High Integrity Aluminum Die Castings: Alloys, Processes, and Melt Preparation (North American Die Casting Association, Wheeling, 2006)

    Google Scholar 

  57. W.M. Rasmussen, To pour or not to pour—the dilemma of assessing your aluminum melt’s cleanliness. Mod. Cast. 86(2), 45–48 (1996)

    Google Scholar 

  58. S. Dasgupta, L. Parmenter, D. Apelian, in Proceedings of the 5th International Molten Metal Conference (AFS, Schaumburg, Il, 1998), pp. 285–300

  59. L. Parmenter, D. Apelian, F. Jensen, Development of a statistically optimized test method for the reduced pressure test. Trans. Am. Foundrym. Soc. 106(106), 439–452 (1998)

    Google Scholar 

  60. S. Makarov, R. Ludwig, D. Apelian, Identification of depth and size of subsurface defects by a multiple-voltage probe sensor: analytical and neural network techniques. J. Nondestr. Eval. 19(2), 67 (2000)

    Article  Google Scholar 

  61. S. Makarov, R. Ludwig, D. Apelian, Electromagnetic visualization technique for non-metallic inclusions in a melt. Meas. Sci. Technol. 10(11), 1047–1053 (1999)

    Article  Google Scholar 

  62. M.A. Dewan, M.A. Rhamdhani, J.B. Mitchell, C.J. Davidson, G.A. Brooks, M. Easton, J.F. Grandfield, Control and removal of impurities from Al melts: a review. Mater. Sci. Forum 693, 149–160 (2011)

    Article  Google Scholar 

  63. T.A. Utigard, I.D., in Light Metals 2005, ed. H. Kvande (TMS, Warrendale, PA, 2005), pp. 951–986

  64. ASTM International, E155-25, Standard reference radiographs for inspection of aluminum and magnesium castings, (West Conshohocken, PA, 2015)

  65. D.W. Hahn, N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), Part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community. Appl. Spectrosc. 64(12), 335A–366A (2010)

    Article  Google Scholar 

  66. D.A. Cremers, F. L. Archuleta, H.C. Dilworth, Rapid analysis of steels using laser-based techniques, in 5th Process Technology Conference on Measurement and Control Instrumentation in the Iron and Steel Industry (AIST, Detroit, 1985)

  67. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry. Spectrochim. Acta Part B Atomic Spectrosc. 56(6), 637–649 (2001)

    Article  Google Scholar 

  68. M. Sabsabi, P. Cielo, Quantitative-analysis of aluminum-alloys by laser-induced breakdown spectroscopy and plasma characterization. Appl. Spectrosc. 49(4), 499–507 (1995)

    Article  Google Scholar 

  69. R. De Saro, A. Weisberg, J. Craparo, in Light Metals 2003, ed. by P.N. Crepeau (TMS, Warrendale, PA, 2003), pp. 1103–1107

    Google Scholar 

  70. A.K. Rai, F.Y. Yueh, J.P. Singh, H. Zhang, High temperature fiber optic laser-induced breakdown spectroscopy sensor for analysis of molten alloy constituents. Rev. Sci. Instrum. 73(10), 3589–3599 (2002)

    Article  Google Scholar 

  71. J.M. Lucas, M. Sabsabi, R. Heon, Method and apparatus for molten material analysis by laser induced breakdown spectroscopy, US Patent 6909505B2 (2003)

  72. R. De Saro, A. Weisberg, Apparatus and method for in situ, real time measurements of properties of liquids, US Patent 20030197125A1 (2003)

  73. S.W. Hudson, D. Apelian, in Light Metals (2014). doi:10.1002/9781118888438.ch170

    Google Scholar 

  74. H. Falk, P. Wintjens, Statistical evaluation of single sparks. Spectrochim. Acta Part B Atomic Spectrosc. 53(1), 49–62 (1998)

    Article  Google Scholar 

  75. H.-M. Kuss, H. Mittelstaedt, G. Mueller, Inclusion mapping and estimation of inclusion contents in ferrous materials by fast scanning laser-induced optical emission spectrometry. J. Anal. Atomic Spectrom. 20(8), 730–735 (2005)

    Article  Google Scholar 

  76. H.M. Kuss, S. Lungen, G. Muller, U. Thurmann, Comparison of spark OES methods for analysis of inclusions in iron base matters. Anal. Bioanal. Chem. 374(7–8), 1242–1249 (2002)

    Article  Google Scholar 

  77. F. RubyMeyer, G. Willay, Rapid identification of inclusions in steel by OES-CDI technique. Rev. Metall. Cah. D Inf. Tech. 94(3), 367 (1997)

    Google Scholar 

  78. M.M. Pande, M.X. Gu, R. Dumarey, S. Devisscher, B. Blanpain, Determination of steel cleanliness in ultra low carbon steel by pulse discrimination analysis-optical emission spectroscopy technique. ISIJ Int. 51(11), 1778–1787 (2011)

    Article  Google Scholar 

  79. M. Sabsabi, L. St-Onge, V. Detalle, J.M. Lucas, Laser-induced breakdown spectroscopy: a new tool for process control, in 16th World Conference on Non-Destructive Testing (Canadian Institute for NDE, Hamilton, Ontario, 2004)

  80. S.W. Hudson, J. Craparo, R. De Saro, D. Apelian, in Light Metals (2015). doi:10.1002/9781119093435.ch166

    Google Scholar 

  81. D.W. Hahn, W.L. Flower, K.R. Hencken, Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy. Appl. Spectrosc. 51(12), 1836–1844 (1997)

    Article  Google Scholar 

  82. D.W. Hahn, Laser-induced breakdown spectroscopy for sizing and elemental analysis of discrete aerosol particles. Appl. Phys. Lett. 72(23), 2960–2962 (1998)

    Article  Google Scholar 

  83. D.W. Hahn, M.M. Lunden, Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy. Aerosol Sci. Technol. 33(1–2), 30–48 (2000)

    Article  Google Scholar 

  84. P.K. Diwakar, K.H. Loper, A.M. Matiaske, D.W. Hahn, Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles. J. Anal. Atomic Spectrom. 27(7), 1110–1119 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaymus W. Hudson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudson, S.W., Apelian, D. Inclusion Detection in Molten Aluminum: Current Art and New Avenues for In Situ Analysis. Inter Metalcast 10, 289–305 (2016). https://doi.org/10.1007/s40962-016-0030-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-016-0030-x

Keywords

Navigation