Skip to main content
Log in

Effect of Y Element on Microstructure and Hot Tearing Sensitivity of As-Cast Al–4.4Cu–1.5Mg–0.15Zr Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this paper, the effect of Y content on hot tearing properties of cast Al–Cu–Mg alloy was studied. The effect and mechanism of Y on hot tearing of cast Al–4.4Cu–1.5Mg–0.15Zr alloy were studied by analyzing the microstructure evolution, phase structure, solidification process and hot tearing sensitivity coefficient of the alloy with different Y additions, and determined the appropriate amount of Y element. The results showed that Y improves hot tearing resistance of Al–4.4Cu–1.5Mg–0.15Zr alloy by refining microstructure and reducing the solidification temperature range. The suitable amount of Y is 0.15 wt%. At this time, a certain amount of Al6Cu6Y low melting point phase is formed in the alloy, and the grain structure is the smallest, which significantly improves the hot tearing resistance of Al–4.4Cu–1.5Mg–0.15Zr alloy. The microstructure coarsening and hot tearing tendency increase with increasing Y content. The experimental results are basically consistent with the hot tearing sensitivity predicted by the Clyne–Davies model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Y.P. Bai, M.M. Liu, J.P. Li, Research progress and failure analysis of aluminum matrix materials for diesel engine piston. Surf. Technol. 47(6), 161–168 (2018)

    Google Scholar 

  2. X.Z. Kai, K.L. Tian, C.M. Wang et al., Effects of ultrasonic vibration on the microstructure and tensile properties of the nano ZrB2/2024Al composites synthesized by direct melt reaction. J. Alloy. Compd. 668, 121–127 (2016). https://doi.org/10.1016/j.jallcom.2016.01.152

    Article  CAS  Google Scholar 

  3. M.R. Nasresfahani, B. Niroumand, Effect of degassing on hot tearing tendency of A206 aluminum cast alloy. Int. J. Metalcast. 14(2), 538–546 (2019). https://doi.org/10.1007/s40962-019-00378-1

    Article  CAS  Google Scholar 

  4. S. Li, D. Apelian, K. Sadayappan, Hot tearing in cast Al alloys: mechanisms and process controls. Int. J. Metalcast. 6(3), 51–58 (2012). https://doi.org/10.1007/BF03355533

    Article  Google Scholar 

  5. M. Gazizov, C.D. Marioara, J. Friis et al., Precipitation behavior in an Al–Cu–Mg–Si alloy during ageing. Mater. Sci. Eng. A 767(8), 138369 (2019). https://doi.org/10.1016/j.msea.2019.138369

    Article  CAS  Google Scholar 

  6. K. Puparattanapong, P. Pandee, S. Boontein et al., Fluidity and hot cracking susceptibility of A356 alloys with Sc additions. Trans. Indian Inst. Met. 71(7), 1583–1593 (2018). https://doi.org/10.1007/s12666-018-1293-0

    Article  CAS  Google Scholar 

  7. A.K. Birru, D. Karunakar, Effects of grain refinement and residual elements on hot tearing of A713 aluminium cast alloy. Trans. Nonferrous Met. Soc. China 26(7), 1783–1790 (2016). https://doi.org/10.1016/S1003-6326(16)64291-7

    Article  CAS  Google Scholar 

  8. D.S. Bhiogade, S.M. Randiwe, A.M. Kuthe et al., Study of hot tearing in stainless steel CF3M during casting using simulation and experimental method. Int. J. Metalcast. 12(6), 1–12 (2017). https://doi.org/10.1007/s40962-017-0170-7

    Article  Google Scholar 

  9. H. Kamguokamga, D. Larouche, M. Bournane et al., Hot tearing of aluminum-copper B206 alloys with iron and silicon additions. Metall. Mater. Trans. A. 527(27), 7413–7423 (2010). https://doi.org/10.1016/j.msea.2010.08.025

    Article  CAS  Google Scholar 

  10. Y.H. Cho, H.W. Kim, W. Kim et al., The effect of Ni additions on the microstructure and castability of low Si added Al casting alloys. Mater. Today Proc. 2(10), 4924–4930 (2015). https://doi.org/10.1016/j.matpr.2015.10.058

    Article  Google Scholar 

  11. F. D’Elia, C. Ravindran, D. Sediako, Interplay among solidification, microstructure, residual strain and hot tearing in B206 aluminum alloy. Mater. Sci. Eng. A 624, 169–180 (2015). https://doi.org/10.1016/j.msea.2014.11.057

    Article  CAS  Google Scholar 

  12. Y. Chen, Z. Liu, S. Liu et al., Effect of Cu on the hot tearing susceptibility of Al–6Zn–2.5Mg–xCu alloy. Int. J. Metalcast. 15(1), 130–140 (2021). https://doi.org/10.1007/s40962-020-00438-x

    Article  CAS  Google Scholar 

  13. F. D’Elia, C. Ravindran, D. Sediako et al., Hot tearing mechanisms of B206 aluminum–copper alloy. Mater. Des. 64, 44–55 (2014). https://doi.org/10.1016/j.matdes.2014.07.024

    Article  CAS  Google Scholar 

  14. T.A. Davis, L. Bichler, F. D’Elia et al., Effect of TiBor on the grain refinement and hot tearing susceptibility of AZ91D magnesium alloy. J. Alloy. Compd. 759, 70–79 (2018). https://doi.org/10.1016/j.matdes.2014.07.024

    Article  CAS  Google Scholar 

  15. F. Liu, X. Zhu, S. Ji, Effects of Ni on the microstructure, hot tear and mechanical properties of Al–Zn–Mg–Cu alloys under as-cast condition. J. Alloy. Compd. 821, 153458 (2019). https://doi.org/10.1016/j.jallcom.2019.153458

    Article  CAS  Google Scholar 

  16. A.M. Nabawy, A.M. Samuel, H.W. Doty et al., A review on the criteria of hot tearing susceptibility of aluminum cast alloys. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-020-00559-3

    Article  Google Scholar 

  17. M. Uludağ, R. Çetin, D. Dispinar et al., Effect of degassing and grain refinement on hot tearing tendency in Al8Si3Cu alloy. Int. J. Metalcast. 12(3), 589–595 (2018). https://doi.org/10.1007/s40962-017-0197-9

    Article  CAS  Google Scholar 

  18. X.C. Zeng, C. Ferguson, K. Sadayappan et al., Effect of titanium levels on the hot tearing sensitivity and abnormal grain growth after T4 heat treatment of Al–Zn–Mg–Cu alloys. Int. J. Metalcast. 12(9), 457–468 (2018). https://doi.org/10.1007/s40962-018-0227-2

    Article  CAS  Google Scholar 

  19. C.C. Tao, H.J. Huang, X.G. Yuan et al., The effect of V element on the hot cracking properties of Al–4.4Cu–1.5Mg–015Zr alloy. Foundry. 69(2), 127–134 (2020)

    Google Scholar 

  20. Z.W. Chen, P. Chen, C. Ma, Microstructures and mechanical properties of Al–Cu–Mn alloy with La and Sm addition. Rare Met. 31(4), 332–335 (2012)

    Article  CAS  Google Scholar 

  21. C.C. Tao, X.G. Yuan, J. Liu et al., Effect of La on hot cracking susceptibility of Al–Cu–Mg alloy. Mater. Res. Express 6(10), 105802 (2019). https://doi.org/10.1088/2053-1591/ab41c8

    Article  CAS  Google Scholar 

  22. T.B. Guo, F. Zhang, W.W. Ding et al., Effect of micro-scale y addition on the fracture properties of Al–Cu–Mn alloy. Chin. J. Mech. Eng. 31(06), 217–227 (2018)

    Google Scholar 

  23. J. Ding, C. Cui, Y. Sun et al., Effect of Mo Zr and Y on the high-temperature properties of Al–Cu–Mn alloy. J. Mater. Res. 34(22), 1–9 (2019). https://doi.org/10.1557/jmr.2019.288

    Article  CAS  Google Scholar 

  24. M. Li, H. Wang, Z. Wei et al., The effect of Y on the hot-tearing resistance of Al–5 wt% Cu based alloy. Mater. Des. 31(5), 2483–2487 (2010). https://doi.org/10.1016/j.matdes.2009.11.044

    Article  CAS  Google Scholar 

  25. T.W. Clyne, G.J. Davies, The influence of composition on solidification cracking susceptibility in binary alloy systems. Brit. Found. 74, 65–73 (1981)

    Google Scholar 

  26. A. Chojecki, I. Telejko, T. Bogacz, Influence of chemical composition on the hot tearing formation of cast steel. Theoret. Appl. Fract. Mech. 27(2), 99–105 (1997). https://doi.org/10.1016/S0167-8442(97)89529-8

    Article  CAS  Google Scholar 

  27. L. Bichler, C. Ravindran, New developments in assessing hot tearing in magnesium alloy castings. Mater. Des. 31(1), 17–23 (2010). https://doi.org/10.1016/j.matdes.2009.12.003

    Article  CAS  Google Scholar 

  28. Z. Dong, N. Liu, W. Hu et al., The effect of Y2O3 on the grain growth and densification of W matrix during low temperature sintering: experiments and modelling. Mater. Des. 181, 108080 (2019). https://doi.org/10.1016/j.matdes.2019.108080

    Article  CAS  Google Scholar 

  29. M. Easton, D. StJohn, An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles. Metall. Mater. Trans. A 36(7), 1911–1920 (2005). https://doi.org/10.1007/s11661-005-0054-y

    Article  Google Scholar 

  30. X.B. Zhang, Research on the Thermal Cracking Tendency of Micro-Nano Particle Reinforced Aluminum Matrix Composites (Shanghai Jiaotong University, Shanghai, 2015)

    Google Scholar 

  31. Y. Li, Q.L. Bai, J.C. Liu et al., The influences of grain size and morphology on the hot tearing susceptibility, contraction, and load behaviors of AA7050 alloy inoculated with Al–5Ti–1B master alloy. Metall. Mater. Trans. A 47(8), 4024–4037 (2016). https://doi.org/10.1007/s11661-016-3543-2

    Article  CAS  Google Scholar 

  32. S.F. Luo, G.Y. Yang, Z. Zou et al., Hot tearing susceptibility of binary Mg–Gd alloy castings and influence of grain refinement. Adv. Eng. Mater. 20, 1800139 (2018). https://doi.org/10.1002/adem.201800139

    Article  CAS  Google Scholar 

  33. T.A. Davis et al., Effect of TiBor on the grain refinement and hot tearing susceptibility of AZ91D magnesium alloy. J. Alloy. Compd. 759, 70–79 (2018). https://doi.org/10.1016/j.jallcom.2018.05.129

    Article  CAS  Google Scholar 

  34. A. Elsayed, D. Sediako, C. Ravindran, Solidification Analysis of a Magnesium–Zinc Alloy Using In-Situ Neutron Diffraction, Wiley, Hoboken (2016). ISBN: 978-3-319-48622-2

  35. H.Z. Li, X.M. Zhang, M.A. Chen, The effect of rare earth yttrium on the structure and heat resistance of 2519 alloy. J. Mater. Sci. Eng. 23(1), 38–41 (2005). https://doi.org/10.3969/j.issn.1009-6264.2005.01.005

    Article  CAS  Google Scholar 

  36. T.Y. Lin, X.Y. Zhang, X. Huang, Research on the influence of Y on the structure and properties of as-cast Al–2.5%Cu alloy. Rare Earths 37(1), 80–84 (2016)

    CAS  Google Scholar 

  37. J. Han, Q.X. Dai, G.R. Li, The effect of rare earth yttrium on the as-cast structure of 7055 aluminum alloy. Mater. Eng. 4, 67–70 (2009). https://doi.org/10.3969/j.issn.1001-4381.2009.04.016

    Article  Google Scholar 

  38. C.S. Vidyasagar, D.B. Karunaka, Effects of yttrium addition and aging on mechanical properties of AA2024 fabricated through multi-step stir casting. Trans. Nonferrous Met. Soc. China 30(2), 288–302 (2020). https://doi.org/10.1016/S1003-6326(20)65213-X

    Article  CAS  Google Scholar 

  39. H.R. Zhou, M.M. Chen, C.W. Du et al., Synthesis of intermetallic compound Al2CuMg. J. Aeronaut. Mater. 33(2), 8–10 (2013). https://doi.org/10.3969/j.issn.1005-5053.2013.2.007

    Article  CAS  Google Scholar 

  40. T. Buhler, S.G. Fries, P.J. Spencer et al., A thermodynamic assessment of the Al–Cu–Mg ternary system. J. Phase Equilib. 19(4), 317–333 (1998). https://doi.org/10.1361/105497198770342058

    Article  CAS  Google Scholar 

  41. F.G. Meng, L.G. Zhang, H.S. Liu et al., Thermodynamic optimization of the Al–Yb binary system. J. Alloy Compd. 452(2), 279–282 (2008). https://doi.org/10.1016/j.jallcom.2006.11.023

    Article  CAS  Google Scholar 

  42. L.G. Zhang, P.J. Masset, X.M. Tao et al., Thermodynamic description of the Al–Cu–Y ternary system. Calphad 35(4), 574–579 (2011). https://doi.org/10.1016/j.calphad.2011.09.008

    Article  CAS  Google Scholar 

  43. A.V. Pozdniakov, R.Y. Barkov, Microstructure and materials characterization of the novel Al–Cu–Y alloy. Mater. Sci. Technol. 34(12), 1489–1496 (2018). https://doi.org/10.1080/02670836.2018.1460536

    Article  CAS  Google Scholar 

  44. J. Campbell, O. Freng, in Castings , 2nd edn. ISBN: 978-0-7506-4790-8 (2003)

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51875365)

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, C., Huang, H., Yuan, X. et al. Effect of Y Element on Microstructure and Hot Tearing Sensitivity of As-Cast Al–4.4Cu–1.5Mg–0.15Zr Alloy. Inter Metalcast 16, 1010–1019 (2022). https://doi.org/10.1007/s40962-021-00666-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00666-9

Keywords

Navigation