Skip to main content
Log in

Developing a New Accuracy-Improved Model for Estimating Scour Depth Around Piers using a Hybrid Method

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

In spite of various methods applied for determining scouring depth around piers, the empirical models are the ones utilized in practice more than others. In this regard, the accuracy of empirical equation used plays the key role in the estimation of scouring depth in numerical software. In this paper, a new accuracy-improved empirical model is proposed to estimate scour depth around piers. The new model, which considers three equations based on the ratio of flow velocity to the critical velocity for the mean particle diameter, is developed using a powerful hybrid method based on various reliable field databases. The performance of the proposed model is compared with those of six common empirical ones available in the literature, artificial neural network, and genetic programing. The empirical models include the two models used in HEC-18, the model developed by Florida Department of Transportation (known as FDOT), Froehlich’s equation, Jain–Fischer’s equation, and Afzali’s equation. According to the obtained results, it is concluded that the new model achieves more precise results comparing with the other conventional and practical available models for the considered data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afzali SH (2016a) New model for determining local scour depth around piers. Arab J Sci Eng 41(10):3807–3815

    Article  Google Scholar 

  • Afzali SH (2016b) Variable-parameter Muskingum model. Iran J Sci Technol Trans Civil Eng 40(1):59–68

    Article  Google Scholar 

  • Afzali SH, Darabi A, Niazkar M (2016) Steel frame optimal design using MHBMO algorithm. Int J Steel Struct 16(2):455–465

    Article  Google Scholar 

  • Arneson LA, Zevenbergen LW, Lagasse PF, Clopper PE (2012) Evaluating scour at bridges HEC-18. US Department of transportation, federal highway administration, Colorado, 5th edition. fhwa-hif-12-003 edn

  • Azamathulla HM, Ghani AA, Zakaria NA, Guven A (2009) Genetic programming to predict bridge pier scour. J Hydraul Eng ASCE 136(3):165–169

    Article  Google Scholar 

  • Breusers H, Nicollet G, Shen H (1977) Local scour around cylindrical piers. J Hydraul Res 15(3):211–252

    Article  Google Scholar 

  • Briaud JL, Ting FC, Chen H, Gudavalli R, Perugu S, Wei G (1999) SRICOS: Prediction of scour rate in cohesive soils at bridge piers. J Geotech Geoenviron Eng 125(4):237–246

    Article  Google Scholar 

  • Brunner GW (2010) HEC-RAS River Analysis System User’s Manual Version 4.1. Technical Report, US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center (HEC), CA, USA

  • Cheng MY, Cao MT, Wu YW (2015) Predicting equilibrium scour depth at bridge piers using evolutionary radial basis function neural network. J Comput Civil Eng ASCE 29(5):04014070

    Article  Google Scholar 

  • Choi SU, Choi B (2016) Prediction of time-dependent local scour around bridge piers. Water Environ J 30(1–2):14–21

    Article  Google Scholar 

  • Esmi Jahromi M, Afzali S (2014) Application of the HBMO approach to predict the total sediment discharge. Iran J Sci Technol Trans Civil Eng 38(C1):123–135

    Google Scholar 

  • Etemad-Shahidi A, Bonakdar L, Jeng DS (2015) Estimation of scour depth around circular piers: applications of model tree. J Hydroinform 17(2):226–238

    Article  Google Scholar 

  • Ettema R, Melville BW, Barkdoll B (1998) Scale effect in pier-scour experiments. J Hydraul Eng ASCE 124(6):639–642

    Article  Google Scholar 

  • Froehlich DC (1988) Analysis of onsite measurements of scour at piers. In: Proceedings of the ASCE national hydraulic engineering conference, pp 534–539

  • Froehlich DC (1989) Local scour at bridge abutments. In: Proceedings of the 1989 national conference on hydraulic engineering, pp 13–18

  • Ghodsi H, Beheshti AA et al (2018) Evaluation of harmony search optimization to predict local scour depth around complex bridge piers. Civil Eng J 4(2):402–412

    Article  Google Scholar 

  • Holnbeck SR (2011) Investigation of Pier Scour in Coarse-Bed Streams in Montana, 2001 through 2007. Scientific Investigations Report 2011-5107, US Department of the Interior, US Geological Survey

  • Lee T, Jeng D, Zhang G, Hong J (2007) Neural network modeling for estimation of scour depth around bridge piers. J Hydrodyn Ser B 19(3):378–386

    Article  Google Scholar 

  • Melville BW (1997) Pier and abutment scour: integrated approach. J Hydraul Eng ASCE 123(2):125–136

    Article  Google Scholar 

  • Najafzadeh M, Balf MR, Rashedi E (2016) Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models. J Hydroinform 18(5):867–884

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2015a) Assessment of Modified Honey Bee Mating Optimization for parameter estimation of nonlinear Muskingum models. J Hydrol Eng 20(4):04014055

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2015b) Optimum design of lined channel sections. Water Resour Manag 29(6):1921–1932

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2016a) Application of new hybrid optimization technique for parameter estimation of new improved version of Muskingum model. Water Resour Manag 30(13):4713–4730

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2016b) Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method. Hydrol Res 48(4):1253–1267. https://doi.org/10.2166/nh.2016.089

    Google Scholar 

  • Niazkar M, Afzali SH (2016c) Streamline performance of Excel in stepwise implementation of numerical solutions. Comput Appl Eng Edu 24(4):555–566

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2017a) Analysis of water distribution networks using MATLAB and Excel spreadsheet: h-based methods. Comput Appl Eng Edu 25(1):129–141

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2017b) Analysis of water distribution networks using MATLAB and Excel spreadsheet: Q-based methods. Comput Appl Eng Edu 25(2):277–289

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2017c) Application of new hybrid method in developing a new semicircular-weir discharge model. Alex Eng J. https://doi.org/10.1016/j.aej.2017.05.004

    Google Scholar 

  • Niazkar M, Afzali SH (2017d) New nonlinear variable-parameter Muskingum models. KSCE J Civil Eng 21(7):2958–2967

    Article  Google Scholar 

  • Niazkar M, Afzali SH (2018) Closure to assessment of Modified Honey Bee Mating Optimization for parameter estimation of nonlinear Muskingum models. J Hydrol Eng. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001602

    Google Scholar 

  • Niazkar M, Rakhshandehroo G, Afzali SH (2018) Deriving explicit equations for optimum design of a circular channel incorporating a variable roughness. Iran J Sci Technol Trans Civil Eng 42(2):133–142. https://doi.org/10.1007/s40996-017-0091-y

    Article  Google Scholar 

  • Olsen NR, Melaaen MC (1993) Three-dimensional calculation of scour around cylinders. J Hydraul Eng ASCE 119(9):1048–1054

    Article  Google Scholar 

  • Pier Scour Data Table (2014) [online]. http://water.usgs.gov/osw/techniques/bs/bsdms/data-tables/pierscourtable.htm

  • Raudkivi AJ, Ettema R (1983) Clear-water scour at cylindrical piers. J Hydraul Eng ASCE 109(3):338–350

    Article  Google Scholar 

  • Richardson EV, Davis SR (2001) Evaluating Scour at Bridges HEC-18. US Department of Transportation, Federal Highway Administration, Colorado, 4th edition. FHWA NHI 01-001 edn

  • Richardson JE, Panchang VG (1998) Three-dimensional simulation of scour-inducing flow at bridge piers. J Hydraul Eng ASCE 124(5):530–540

    Article  Google Scholar 

  • Roulund A, Sumer BM, Fredsøe J, Michelsen J (2005) Numerical and experimental investigation of flow and scour around a circular pile. J Fluid Mech 534:351–401

    Article  MathSciNet  MATH  Google Scholar 

  • Sheikholeslami SMM, Kashefpoor SM (2009) Estimation of scour depth at bridge piers by using faster model. J Water Irrig 1(1):57–68

    Google Scholar 

  • Sheppard DM, Miller W Jr (2006) Live-bed local pier scour experiments. J Hydraul Eng ASCE 132(7):635–642

    Article  Google Scholar 

  • Sheppard D, Renna R (2005) Bridge scour manual. Florida Department of Transportation, Tallahassee

    Google Scholar 

  • Sheppard D, Melville B, Demir H (2013) Evaluation of existing equations for local scour at bridge piers. J Hydraul Eng ASCE 140(1):14–23

    Article  Google Scholar 

  • Wilson KV (1995) Scour at selected bridge sites in Mississippi. Report 94-4241, U.S. Geological Survey, Water-Resources Investigations

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Niazkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niazkar, M., Afzali, S.H. Developing a New Accuracy-Improved Model for Estimating Scour Depth Around Piers using a Hybrid Method. Iran J Sci Technol Trans Civ Eng 43, 179–189 (2019). https://doi.org/10.1007/s40996-018-0129-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-018-0129-9

Keywords

Navigation