Skip to main content
Log in

On the Nonlinear Vibrations of Polymer Nanocomposite Rectangular Plates Reinforced by Graphene Nanoplatelets: A Unified Higher-Order Shear Deformable Model

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a unified higher-order shear deformable plate model to numerically examine the nonlinear vibration behavior of thick and moderately thick polymer nanocomposite rectangular plates reinforced by graphene platelets (GPLs). Four distribution patterns of graphene nanoplatelet nanofillers across the plate thickness are considered. The effective material properties of graphene platelet-reinforced polymer (GPL-RP) nanocomposite plate are approximately calculated by employing the modified Halpin–Tsai model and rule of mixture. Using a generalized displacement field, a unified mathematical formulation is derived based on Hamilton’s principle in conjunction with von Kármán geometrical nonlinearity. By selecting appropriate shape functions, the proposed unified nonlinear plate model can be reduced to that on the basis of Mindlin, Reddy, parabolic, trigonometric and exponential shear deformation plate theories. The investigation of nonlinear vibration behavior is performed by employing a multistep numerical solution approach. In this regard, the discretization process is done through the generalized differential quadrature method. Then, the discretized governing equations are solved by employing the numerical-based Galerkin technique, periodic time differential operators and pseudo-arc length continuation algorithm. A detailed parametric study is carried out to examine the effect of GPL distribution pattern, weight fraction, geometry of GPL nanofillers and boundary constraints on the nonlinear vibration characteristics of the GPL-RP nanocomposite rectangular plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Affdl J, Kardos J (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16:344–352

    Article  Google Scholar 

  • Alibeigloo A (2013) Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity. Compos Struct 95:612–622

    Article  Google Scholar 

  • Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19:1439–1451

    Article  Google Scholar 

  • Ansari R, Gholami R (2016) Nonlinear primary resonance of third-order shear deformable functionally graded nanocomposite rectangular plates reinforced by carbon nanotubes. Compos Struct 154:707–723

    Article  Google Scholar 

  • Ansari R, Shojaei MF, Mohammadi V, Gholami R, Sadeghi F (2014a) Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams. Compos Struct 113:316–327

    Article  Google Scholar 

  • Ansari R, Mohammadi V, Shojaei MF, Gholami R, Rouhi H (2014b) Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. Eur J Mech A Solids 45:143–152

    Article  MathSciNet  MATH  Google Scholar 

  • Ansari R, Hasrati E, Shojaei MF, Gholami R, Shahabodini A (2015) Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy. Phys E 69:294–305

    Article  Google Scholar 

  • Ansari R, Pourashraf T, Gholami R, Shahabodini A (2016a) Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers. Compos B Eng 90:267–277

    Article  Google Scholar 

  • Ansari R, Torabi J, Shojaei MF (2016b) Vibrational analysis of functionally graded carbon nanotube-reinforced composite spherical shells resting on elastic foundation using the variational differential quadrature method. Eur J Mech A Solids 60:166–182

    Article  MathSciNet  MATH  Google Scholar 

  • Ansari R, Rouhi S, Shahnazari A (2018) Investigation of the vibrational characteristics of double-walled carbon nanotubes/double-layered graphene sheets using the finite element method. Mech Adv Mater Struct 25:253–265

    Article  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  Google Scholar 

  • Chen D, Yang J, Kitipornchai S (2017) Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos Sci Technol 142:235–245

    Article  Google Scholar 

  • Das TK, Prusty S (2013) Graphene-based polymer composites and their applications. Polym Plast Technol Eng 52:319–331

    Article  Google Scholar 

  • De Borst R, Crisfield MA, Remmers JJ, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley, New York

    Book  MATH  Google Scholar 

  • Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213:1060–1077

    Article  Google Scholar 

  • Fan Y, Wang H (2016) Nonlinear bending and postbuckling analysis of matrix cracked hybrid laminated plates containing carbon nanotube reinforced composite layers in thermal environments. Compos B Eng 86:1–16

    Article  Google Scholar 

  • Feng C, Kitipornchai S, Yang J (2017a) Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos B Eng 110:132–140

    Article  Google Scholar 

  • Feng C, Kitipornchai S, Yang J (2017b) Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng Struct 140:110–119

    Article  Google Scholar 

  • Fennimore A, Yuzvinsky T, Han W-Q, Fuhrer M, Cumings J, Zettl A (2003) Rotational actuators based on carbon nanotubes. Nature 424:408–410

    Article  Google Scholar 

  • Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng 39:933–961

    Article  Google Scholar 

  • Gholami R, Ansari R (2016) A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates. Nonlinear Dyn 84:2403–2422

    Article  MathSciNet  Google Scholar 

  • Gholami R, Ansari R (2017) Large deflection geometrically nonlinear analysis of functionally graded multilayer graphene platelet-reinforced polymer composite rectangular plates. Compos Struct 180:760–771

    Article  Google Scholar 

  • Gholami R, Ansari R, Gholami Y (2017) Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams. Compos Struct 174:45–58

    Article  Google Scholar 

  • Harris B (1986) Engineering composite materials. Institute of Metals London, London

    Google Scholar 

  • Hule RA, Pochan DJ (2007) Polymer nanocomposites for biomedical applications. MRS Bull 32:354–358

    Article  Google Scholar 

  • Hull D, Clyne T (1996) An introduction to composite materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Jam J, Kiani Y (2015) Buckling of pressurized functionally graded carbon nanotube reinforced conical shells. Compos Struct 125:586–595

    Article  Google Scholar 

  • Ji X-Y, Cao Y-P, Feng X-Q (2010) Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Model Simul Mater Sci Eng 18:045005

    Article  Google Scholar 

  • Karama M, Afaq K, Mistou S (2003) Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int J Solids Struct 40:1525–1546

    Article  MATH  Google Scholar 

  • Ke L-L, Yang J, Kitipornchai S (2010) Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct 92:676–683

    Article  Google Scholar 

  • Ke L-L, Yang J, Kitipornchai S (2013) Dynamic stability of functionally graded carbon nanotube-reinforced composite beams. Mech Adv Mater Struct 20:28–37

    Article  Google Scholar 

  • Keller HB (1977) Numerical solution of bifurcation and nonlinear eigenvalue problems, applications of bifurcation theory. In: Proceedings of the advanced semester, University of Wisconsin, Madison. Academic Press, Wisconsin, NY, pp 359–384

  • Kiani K (2014) Free vibration of conducting nanoplates exposed to unidirectional in-plane magnetic fields using nonlocal shear deformable plate theories. Phys E 57:179–192

    Article  Google Scholar 

  • Kiani K (2015a) Vibration analysis of two orthogonal slender single-walled carbon nanotubes with a new insight into continuum-based modeling of van der Waals forces. Compos B Eng 73:72–81

    Article  Google Scholar 

  • Kiani K (2015b) Dynamic interactions of doubly orthogonal stocky single-walled carbon nanotubes. Compos Struct 125:144–158

    Article  Google Scholar 

  • Kitipornchai S, Chen D, Yang J (2017) Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater Des 116:656–665

    Article  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C 60: buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  • Kurahatti R, Surendranathan A, Kori S, Singh N, Kumar AR, Srivastava S (2010) Defence applications of polymer nanocomposites. Def Sci J 60:551–563

    Article  Google Scholar 

  • Lee JH, Marroquin J, Rhee KY, Park SJ, Hui D (2013) Cryomilling application of graphene to improve material properties of graphene/chitosan nanocomposites. Compos B Eng 45:682–687

    Article  Google Scholar 

  • Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:064120

    Article  Google Scholar 

  • Mahmoodi M, Vakilifard M (2017) A comprehensive micromechanical modeling of electro-thermo-mechanical behaviors of CNT reinforced smart nanocomposites. Mater Des 122:347–365

    Article  Google Scholar 

  • Moradi-Dastjerdi R, Foroutan M, Pourasghar A (2013) Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method. Mater Des 44:256–266

    Article  MATH  Google Scholar 

  • Mortazavi B, Bardon J, Ahzi S (2013) Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput Mater Sci 69:100–106

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  • Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  Google Scholar 

  • Qiu F, Hao Y, Li X, Wang B, Wang M (2015) Functionalized graphene sheets filled isotactic polypropylene nanocomposites. Compos B Eng 71:175–183

    Article  Google Scholar 

  • Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  Google Scholar 

  • Rafiee M, Yang J, Kitipornchai S (2013) Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers. Compos Struct 96:716–725

    Article  Google Scholar 

  • Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51:745–752

    Article  MATH  Google Scholar 

  • Shen H-S, Xiang Y, Lin F (2017a) Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments. Comput Methods Appl Mech Eng 319:175–193

    Article  MathSciNet  Google Scholar 

  • Shen H-S, Xiang Y, Lin F, Hui D (2017b) Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments. Compos B Eng 119:67–78

    Article  Google Scholar 

  • Shen H-S, Xiang Y, Lin F (2017c) Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations. Thin Walled Struct 118:229–237

    Article  Google Scholar 

  • Shen H-S, Xiang Y, Lin F (2017d) Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments. Compos Struct 170:80–90

    Article  Google Scholar 

  • Shojaei MF, Ansari R, Mohammadi V, Rouhi H (2014) Nonlinear forced vibration analysis of postbuckled beams. Arch Appl Mech 84:421–440

    Article  MATH  Google Scholar 

  • Shokrieh MM, Rafiee R (2010) Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber. Mech Res Commun 37:235–240

    Article  Google Scholar 

  • Shokrieh Z, Seifi M, Shokrieh M (2017) Simulation of stiffness of randomly-distributed-graphene/epoxy nanocomposites using a combined finite element-micromechanics method. Mech Mater 115:16–21

    Article  Google Scholar 

  • Shu C (2000) Differential quadrature and its application in engineering. Springer, London

    Book  MATH  Google Scholar 

  • Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  • Terrones M, Terrones H (2003) The carbon nanocosmos: novel materials for the twenty-first century. Philos Trans R Soc Lond A Math Phys Eng Sci 361:2789–2806

    Article  Google Scholar 

  • Tornabene F (2009) Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Comput Methods Appl Mech Eng 198:2911–2935

    Article  MATH  Google Scholar 

  • Tornabene F, Fantuzzi N, Bacciocchi M, Viola E (2016) Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos B Eng 89:187–218

    Article  Google Scholar 

  • Touratier M (1991) An efficient standard plate theory. Int J Eng Sci 29:901–916

    Article  MATH  Google Scholar 

  • Wattanasakulpong N, Ungbhakorn V (2013) Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput Mater Sci 71:201–208

    Article  Google Scholar 

  • Wu H, Kitipornchai S, Yang J (2017a) Imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite beams. Appl Math Model 42:735–752

    Article  MathSciNet  Google Scholar 

  • Wu H, Yang J, Kitipornchai S (2017b) Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos Struct 162:244–254

    Article  Google Scholar 

  • Wu H, Kitipornchai S, Yang J (2017c) Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates. Mater Des 132:430–441

    Article  Google Scholar 

  • Yang J, Wu H, Kitipornchai S (2017a) Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos Struct 161:111–118

    Article  Google Scholar 

  • Yang B, Yang J, Kitipornchai S (2017b) Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity. Meccanica 52:2275–2292

    Article  MathSciNet  MATH  Google Scholar 

  • Yang B, Kitipornchai S, Yang Y-F, Yang J (2017c) 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates. Appl Math Model 49:69–86

    Article  MathSciNet  Google Scholar 

  • Yasmin A, Daniel IM (2004) Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 45:8211–8219

    Article  Google Scholar 

  • Zhang L, Shi C, Rhee KY, Zhao N (2012) Properties of Co 0.5 Ni 0.5 Fe 2 O 4/carbon nanotubes/polyimide nanocomposites for microwave absorption. Compos A Appl Sci Manuf 43:2241–2248

    Article  Google Scholar 

  • Zhang L, Lei Z, Liew K, Yu J (2014) Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels. Comput Methods Appl Mech Eng 273:1–18

    Article  MATH  Google Scholar 

  • Zhang L, Liew K, Reddy J (2016) Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression. Comput Methods Appl Mech Eng 298:1–28

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu P, Lei Z, Liew KM (2012) Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos Struct 94:1450–1460

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheb Gholami.

Appendices

Appendix 1

Definition

If A is an m-by-n matrix and B is a p-by-q matrix, the Kronecker product \({\mathbf{A}} \otimes {\mathbf{B}}\) is an mp-by-nq block matrix and defined as

$${\mathbf{A}} \otimes {\mathbf{B}}=\left[{\begin{array}{*{20}c}{a_{11} {\mathbf{B}}} &\cdots& {a_{1n} {\mathbf{B}}}\\ \vdots&\ddots&\vdots \\{a_{m1} {\mathbf{B}}} &\cdots& {a_{mn} {\mathbf{B}}}\\ \end{array}} \right]_{mp \times nq}$$

(b) Integral Matrix Operators

$$\mathop \int \limits_{{x_{1}}}^{{x_{N}}} f\left(x \right)dx=\left({\mathop \sum \limits_{r=0}^{N - 1} {\tilde{\mathbf{X}}}^{\left(r \right)} {\mathbf{D}}_{x}^{\left(r \right)}} \right){\mathbf{F}}={\mathbf{S}}_{x} {\mathbf{F}},\,{\mathbf{S}}_{x}= \left[{S_{x}} \right]_{1 \times N}$$

where \({\mathbf{D}}_{x}^{\left(r \right)}\) denotes the GDQ differential operator, and

$$\begin{aligned} {\tilde{\mathbf{X}}}^{\left(r \right)}&= \left[{\frac{{\left({x_{2}- x_{1}} \right)^{r + 1}}}{{2^{r + 1} \left({r + 1} \right)!}}, \ldots,\frac{{\left({x_{i + 1}- x_{i}} \right)^{r + 1}- \left({x_{i - 1}- x_{i}} \right)^{r + 1}}}{{2^{r + 1} \left({r + 1} \right)!}}, \ldots, - \frac{{\left({x_{N - 1}- x_{N}} \right)^{r + 1}}}{{2^{r + 1} \left({r + 1} \right)!}}} \right], \\ & \quad \quad \quad& \quad \quad \quad& \quad \quad \quad& \quad \quad \quad i=2,3, \ldots,N - 1 \\\end{aligned}$$

Appendix 2

The discretized components of Kij, Mij and \({\mathbf{K}}_{nl} \left({\mathbf{X}} \right)\) are as

$$\begin{aligned} {\mathbf{K}}_{11}&= A_{11} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}+ A_{66} {\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}},{\mathbf{K}}_{12}= \left({A_{12}+ A_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}, \\{\mathbf{K}}_{13}&= B_{11} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(3 \right)}+ \left({B_{12}+ 2B_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}, \\{\mathbf{K}}_{14}&= C_{11} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}+ C_{66} {\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}},{\mathbf{K}}_{15}= \left({C_{12}+ C_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}, \\{\mathbf{K}}_{21}&= \left({A_{12}+ A_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)},\quad{\mathbf{K}}_{22}= A_{22} {\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}}+ A_{66} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}, \\{\mathbf{K}}_{23}&= \left({B_{12}+ 2B_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}+ B_{22} {\mathbf{D}}_{{x_{2}}}^{\left(3 \right)}\otimes {\mathbf{I}}_{{x_{1}}},{\mathbf{K}}_{24}= \left({C_{12}+ C_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)},\\{\mathbf{K}}_{25}&= C_{22} {\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}}+ C_{66} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)},{\mathbf{K}}_{31}=- B_{11} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(3 \right)}- \left({2B_{66}+ B_{12}} \right){\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}, \\{\mathbf{K}}_{32}&=- B_{22} {\mathbf{D}}_{{x_{2}}}^{\left(3 \right)}\otimes {\mathbf{I}}_{{x_{1}}}- \left({B_{12}+ 2B_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}, \\{\mathbf{K}}_{33}&= A_{55} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}+ A_{44} {\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}}- D_{11} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(4 \right)}- 2\left({D_{12}+ 2D_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}- D_{22} {\mathbf{D}}_{{x_{2}}}^{\left(4 \right)}\otimes {\mathbf{I}}_{{x_{1}}}, \\{\mathbf{K}}_{34}&= A_{55} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}+ F_{11} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(3 \right)}+ \left({F_{12}+ 2F_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)},\\{\mathbf{K}}_{35}&= A_{44} {\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}+ \left({F_{12}+ 2F_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}+ F_{22} {\mathbf{D}}_{{x_{2}}}^{\left(3 \right)}\otimes {\mathbf{I}}_{{x_{1}}}, \\{\mathbf{K}}_{41}&= C_{11} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}+ C_{66} {\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}} {\mathbf{K}}_{42}= \left({C_{12}+ C_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}, \\{\mathbf{K}}_{43}&=- A_{55} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}+ F_{11} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(3 \right)}+ \left({F_{12}+ 2F_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}, \\{\mathbf{K}}_{44}&= H_{11} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}- A_{55} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{I}}_{{x_{1}}}+ H_{66} {\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}},{\mathbf{K}}_{45}= \left({H_{12}+ H_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}, \\{\mathbf{K}}_{51}&= \left({C_{12}+ C_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)},{\mathbf{K}}_{52}= C_{22} {\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}}+ C_{66} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}, \\{\mathbf{K}}_{53}&=- A_{44} {\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}+ \left({F_{12}+ 2F_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}+ F_{22} {\mathbf{D}}_{{x_{2}}}^{\left(3 \right)}\otimes {\mathbf{I}}_{{x_{1}}}, \\{\mathbf{K}}_{54}&= \left({H_{12}+ H_{66}} \right){\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)},{\mathbf{K}}_{55}= H_{22} {\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}}+ H_{66} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}- A_{44} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{I}}_{{x_{1}}}. \\\end{aligned}$$
(46)
$$\begin{aligned} {\mathbf{M}}_{11}&= {\mathbf{M}}_{22}= I_{0} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{I}}_{{x_{1}}},{\mathbf{M}}_{33}= I_{0} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{I}}_{{x_{1}}}- I_{4} \left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}+ {\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right), \\{\mathbf{M}}_{44}&= {\mathbf{M}}_{55}= I_{5} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{I}}_{{x_{1}}}.{\mathbf{M}}_{14}= {\mathbf{M}}_{41}= {\mathbf{M}}_{25}= {\mathbf{M}}_{52}= \varvec{I}_{2} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{I}}_{{x_{1}}},{\mathbf{M}}_{13}=- {\mathbf{M}}_{31}= I_{1} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}, \\{\mathbf{M}}_{23}&=- {\mathbf{M}}_{32}= I_{1} {\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}},{\mathbf{M}}_{34}=- {\mathbf{M}}_{43}=- I_{3} {\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)},{\mathbf{M}}_{35}=- {\mathbf{M}}_{53}=- I_{3} {\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}, \\\end{aligned}$$
(47)

Also, one can be written the components of the nonlinear stiffness vector as follows

$$\begin{aligned} {\mathbf{K}}_{{u_{1}}} \left({\mathbf{X}} \right) &= A_{11} \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}} \right){\mathbf{w}}} \right) + \left({A_{12}+ A_{66}} \right)\left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \\ & \quad+ A_{66} \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}} \right){\mathbf{w}}} \right), \\{\mathbf{K}}_{{u_{2}}} \left({\mathbf{X}} \right) &= A_{22} \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right) + \left({A_{12}+ A_{66}} \right)\left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \\ & \quad+ A_{66} \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right), \\{\mathbf{K}}_{w} \left({\mathbf{X}} \right) &= \left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right)\left({{\mathbf{N}}_{11}\circ \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right)} \right) + \left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right)\left({{\mathbf{N}}_{22}\circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right)} \right) \\ & \quad+ \left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right)\left({{\mathbf{N}}_{12}\circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right)} \right) + \left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right)\left({{\mathbf{N}}_{12}\circ \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right)} \right) \\ & \quad- B_{11} \left({\left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}} \right){\mathbf{w}}} \right) + \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(3 \right)}} \right){\mathbf{w}}} \right)} \right) \\ & \quad- \left({B_{12}+ 2B_{66}} \right)\left({\left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) + \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}} \right){\mathbf{w}}} \right)} \right) \\ & \quad- B_{66} \left({\left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right) + \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right)} \right) \\ & \quad- B_{12} \left({\left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) + \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right)} \right) \\ & \quad- B_{22} \left({\left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right) + \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(3 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right)} \right), \\{\mathbf{K}}_{{\psi_{1}}} \left({\mathbf{X}} \right) &= C_{11} \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{\varvec{x}_{1}}}^{\left(2 \right)}} \right){\mathbf{w}}} \right) + \left({C_{12}+ C_{66}} \right)\left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \\ & \quad+ C_{66} \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}} \right){\mathbf{w}}} \right), \\\end{aligned}$$
$$\begin{aligned} {\mathbf{K}}_{{\psi_{2}}} \left({\mathbf{X}} \right)=C_{22} \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right) + \left({C_{12}+ C_{66}} \right)\left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + C_{66} \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right). \hfill \\\end{aligned}$$
(48)

where

$$\begin{aligned} {\mathbf{N}}_{11}&= A_{11} \left[{\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{u}}_{1}+ \frac{1}{2}\left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right)} \right] \\ & \quad+ A_{12} \left[{\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{u}}_{2}+ \frac{1}{2}\left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right)} \right] + C_{11} \left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\varvec{\uppsi}}_{1}\\ & \quad+ C_{12} \left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\varvec{\uppsi}}_{2}+ B_{11} \left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}} \right){\mathbf{w}} + B_{22} \left({{\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}, \\{\mathbf{N}}_{22}&= A_{22} \left[{\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{u}}_{2}+ \frac{1}{2}\left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right)} \right] \\ & \quad+ A_{12} \left[{\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{u}}_{1}+ \frac{1}{2}\left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right)} \right] + C_{22} \left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\varvec{\uppsi}}_{2}\\ & \quad+ C_{12} \left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\varvec{\uppsi}}_{1}+ B_{22} \left({{\mathbf{D}}_{{x_{2}}}^{\left(2 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}} + {\text{B}}_{12} \left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(2 \right)}} \right){\mathbf{w}}, \\{\mathbf{N}}_{12}&= A_{66} \left[{\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{u}}_{1}+ \left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{u}}_{2}+ \left({\left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right) \circ \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\mathbf{w}}} \right)} \right] \\ & \quad+ C_{66} \left[{\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\varvec{\uppsi}}_{1}+ \left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\varvec{\uppsi}}_{2}} \right] \\ & \quad+ B_{66} \left({\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{I}}_{{x_{1}}}} \right){\varvec{\uppsi}}_{1}+ \left({{\mathbf{I}}_{{x_{2}}}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\varvec{\uppsi}}_{2}+ 2\left({{\mathbf{D}}_{{x_{2}}}^{\left(1 \right)}\otimes {\mathbf{D}}_{{x_{1}}}^{\left(1 \right)}} \right){\mathbf{w}}} \right). \\\end{aligned}$$
(49)

where \({\mathbf{I}}_{{x_{1}}}\) and \({\mathbf{I}}_{{x_{2}}}\) are, respectively, N × N and M × M identity tensors and ° indicates the Hadamard product.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, R., Ansari, R. On the Nonlinear Vibrations of Polymer Nanocomposite Rectangular Plates Reinforced by Graphene Nanoplatelets: A Unified Higher-Order Shear Deformable Model. Iran J Sci Technol Trans Mech Eng 43 (Suppl 1), 603–620 (2019). https://doi.org/10.1007/s40997-018-0182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0182-9

Keywords

Navigation