Skip to main content
Log in

Dilated Deep Neural Network for Segmentation of Retinal Blood Vessels in Fundus Images

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

Medical diagnosis is being assisted by numerous expert systems that have been developed to increase the accuracy of such diagnoses. The development of image processing techniques along with the rapid development in areas like machine learning and computer vision help in creating such expert systems that almost nearly match the accuracy of the expert human eye. The medical condition of diabetic retinopathy is diagnosed by analyzing the retinal blood vessels for damages, abnormal new growths and ruptures. Various techniques using convolutional neural networks have been used to segment retinal blood vessels from fundus images, but these techniques often do not segment the retinal blood vessels accurately and add additional noise due to the limited receptive field of the convolutional filters. The limited receptive field of the convolutional layer prevents the convolutional neural network from getting an accurate context of objects that extend beyond the size of the filter. The proposed architecture uses a dilated convolutional filter to obtain a larger receptive field which leads to a greater accuracy in segmenting the retinal blood vessels with near human accuracy. The convolutional neural networks were trained using the popular datasets. The proposed architecture produced an area under ROC curve (AUC) of 0.9794 and an accuracy of 95.61% and required very few iterations to train the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ballard DH, Brown CM (1982) Computer vision. en.scientificcommons.org

  • Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10:191–203. https://doi.org/10.1016/0098-3004(84)90020-7

    Article  Google Scholar 

  • Boughorbel S, Jarray F, El-Anbari M (2017) Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS ONE 12(6):e0177678

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support vector machine. Mach Learn. https://doi.org/10.1007/978-0-387-73003-5_299

    Article  MATH  Google Scholar 

  • Engelgau MM, Geiss LS, Saaddine JB et al (2004) The evolving diabetes burden in the United States. Ann Intern Med 140:945–950

    Article  Google Scholar 

  • Fraz MM, Remagnino P, Hoppe A et al (2012) Blood vessel segmentation methodologies in retinal images—a survey. Comput Methods Programs Biomed 108:407–433. https://doi.org/10.1016/j.cmpb.2012.03.009

    Article  Google Scholar 

  • Hoover A, Goldbaum M (2003) Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22(8):951–958

    Article  Google Scholar 

  • Hoover AD, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Article  Google Scholar 

  • Jegou S, Drozdzal M, Vazquez D et al (2017) The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: IEEE Computer Society conference on computer vision and pattern recognition workshops, pp 1175–1183

  • Jiang Z, Zhang H, Wang Y, Ko SB (2018) Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput Med Imaging Graph 68:1–15

    Article  Google Scholar 

  • Krizhevsky A, Sutskever I, Geoffrey EH (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1–9. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  • Kunsch H, Geman S, Kehagias A (1995) Hidden Markov random fields. Ann Appl Probab 5:577–602. https://doi.org/10.1214/aoap/1177004696

    Article  MathSciNet  MATH  Google Scholar 

  • Lafferty J, McCallum A, Pereira FCN (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML’01 Proc Eighteenth Int Conf Mach Learn vol 8, pp 282–289. https://doi.org/10.1038/nprot.2006.61

    Article  Google Scholar 

  • Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380. https://doi.org/10.1109/tmi.2016.2546227

    Article  Google Scholar 

  • Litjens G, Kooi T, Bejnordi BE, et al (2017) A survey on deep learning in medical image analysis. https://doi.org/10.1016/j.media.2017.07.005. arXiv arXiv:1702.05747, pp 1–34

    Article  Google Scholar 

  • Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Computer Society conference on computer vision and pattern recognition, pp 3431–3440

  • Luo L, Chen D, Xue D (2018) Retinal blood vessels semantic segmentation method based on modified u-net. In 2018 Chinese Control And Decision Conference (CCDC). IEEE, pp 1892–1895

  • Lupascu CA, Tegolo D, Trucco E (2010) FABC: retinal vessel segmentation using AdaBoost. IEEE Trans Inf Technol Biomed 14:1267–1274. https://doi.org/10.1109/TITB.2010.2052282

    Article  Google Scholar 

  • Marín D, Aquino A, Gegúndez-Arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30:146–158. https://doi.org/10.1109/TMI.2010.2064333

    Article  Google Scholar 

  • Orlando JI, Blaschko M (2014) Learning fully-connected CRFs for blood vessel segmentation in retinal images. In: Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp 634–641

    Chapter  Google Scholar 

  • Orlando JI, Prokofyeva E, Blaschko MB (2017) A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans Biomed Eng 64(1):16–27

    Article  Google Scholar 

  • Ortiz A, Ramírez J, Cruz-Arándiga R, García-Tarifa MJ, Martínez-Murcia FJ, Górriz JM (2019) Retinal blood vessel segmentation by multi-channel deep convolutional autoencoder. In: Graña M et al (eds) International Joint Conference SOCO’18-CISIS’18-ICEUTE’18. SOCO’18-CISIS’18-ICEUTE’18 2018. Advances in intelligent systems and computing, vol 771. Springer, Cham

    Google Scholar 

  • Osareh A, Shadgar B (2009) Automatic blood vessel segmentation in color images of retina. Iran J Sci Technol Trans B Eng 33:191–206

    MATH  Google Scholar 

  • Owen CG, Rudnicka AR, Mullen R et al (2009) Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (caiar) program. Investig Ophthalmol Vis Sci 50:2004–2010. https://doi.org/10.1167/iovs.08-3018

    Article  Google Scholar 

  • Peterson LE (2009) K-nearest neighbor. Scholarpedia 4:1883. https://doi.org/10.4249/scholarpedia.1883

    Article  Google Scholar 

  • Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26:1357–1365. https://doi.org/10.1109/TMI.2007.898551

    Article  Google Scholar 

  • Robinson K (1997) Dictionary of eye terminology. Br J Ophthalmol 81:1021. https://doi.org/10.1136/bjo.81.11.1021c

    Article  Google Scholar 

  • Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Miccai, pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

    Google Scholar 

  • Roychowdhury S, Koozekanani DD, Parhi KK (2014) DREAM: diabetic retinopathy analysis using machine learning. IEEE J Biomed Health Informat 18(5):1717–1728

    Article  Google Scholar 

  • Shapiro L, Stockman G (2001) Computer vision. Prentice Hall, Englewood Cliffs. https://doi.org/10.1525/jer.2008.3.1.toc

    Book  Google Scholar 

  • Sinthanayothin C, Boyce JF, Williamson TH et al (2002) Automated detection of diabetic retinopathy on digital fundus images. Diabet Med 19:105–112. https://doi.org/10.1046/j.1464-5491.2002.00613.x

    Article  Google Scholar 

  • Soares JVB, Leandro JJG, Cesar RM et al (2006) Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 25:1214–1222. https://doi.org/10.1109/TMI.2006.879967

    Article  Google Scholar 

  • Solkar SD, Das L (2017) Survey on retinal blood vessels segmentation techniques for detection of diabetic retinopathy. Diabetes Int J Electron Electr Comput Syst 6(6):490–495. ISSN 2348-117X

    Google Scholar 

  • Staal J, Abràmoff MD, Niemeijer M et al (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23:501–509. https://doi.org/10.1109/TMI.2004.825627

    Article  Google Scholar 

  • Wang SH, Lv YD, Sui Y, Liu S, Wang SJ, Zhang YD (2018) Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. J Med Syst 42(1):2

    Article  Google Scholar 

  • Xu L, Luo S (2010) A novel method for blood vessel detection from retinal images. Biomed Eng Online 9:14. https://doi.org/10.1186/1475-925x-9-14

    Article  Google Scholar 

  • You X, Peng Q, Yuan Y et al (2011) Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit 44:2314–2324. https://doi.org/10.1016/j.patcog.2011.01.007

    Article  Google Scholar 

  • Yu F, Koltun V (2015) Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122

  • Yu J, Lee H, Im Y et al (2010) Real-time classification of internet application traffic using a hierarchical multi-class SVM. KSII Trans Internet Inf Syst 4:859–876. https://doi.org/10.3837/tiis.2010.10.009

    Article  Google Scholar 

  • Zana F, Klein JC (2001) Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10:1010–1019. https://doi.org/10.1109/83.931095

    Article  MATH  Google Scholar 

  • Zhang J, Hu J (2008) Image segmentation based on 2D Otsu method with Histogram analysis. In: 2008 international conference on computer science and software engineering, pp 105–108

  • Zhang Y, Wu X, Lu S, Wang H, Phillips P, Wang S (2016) Smart detection on abnormal breasts in digital mammography based on contrast-limited adaptive histogram equalization and chaotic adaptive real-coded biogeography-based optimization. Simulation 92(9):873–885

    Article  Google Scholar 

  • Zhang YD, Muhammad K, Tang C (2018) Twelve-layer deep convolutional neural network with stochastic pooling for tea category classification on GPU platform. Multimed Tools Appl 77:22821–22839

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiban Sekhar Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Vasan, A. & Roy, S.S. Dilated Deep Neural Network for Segmentation of Retinal Blood Vessels in Fundus Images. Iran J Sci Technol Trans Electr Eng 44, 505–518 (2020). https://doi.org/10.1007/s40998-019-00213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-019-00213-7

Keywords

Navigation