Skip to main content
Log in

Process Equilibrium, Kinetics, and Mechanisms of Ionic-Liquid Induced Dephenolation of Petroleum Effluent

  • Original Paper
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

This study focuses on the effectiveness of ionic liquid (1-ethyl-3-methyl imidazolium bromide, EMIB) and chemically modified (EMIB impregnated) clay (CMC) as adsorbents for dephenolation of petroleum effluent. Process equilibrium and kinetics (including mechanistic modeling) of the adsorption were investigated. The results showed uptake efficiencies of 91.7 and 85% for CMC and EMIB, respectively, at equilibrium time of 25 min. The linear and non-linear isotherm and kinetic models were best fitted to Langmuir and pseudo-second-order model for both adsorbents. The CMC and EMIB had their monolayer adsorption capacity equal to 3.487 and 0.989 mg/g, respectively. Seven mechanistic models were proposed, with mechanism IV and its corresponding model equation IV (shifting rate order model) emerging as the best fitting to the adsorption data. The thermodynamic studies showed that the process was physical (ΔH < 84 kJ mol−1), spontaneous, and exothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Temkpin constant, l/g

C e :

Equilibrium concentration, mg/l

C 0 :

Initial concentration, mg/l

C t :

Concentration at time t, mg/l

G :

Free energy change, kJ/mol

H :

Enthalpy change, kJ/mol

K 1 :

Pseudo-first-order kinetic constant

K 2 :

Pseudo-second-order kinetic constant

K f :

Freundlich constants, l/g

M :

Total mass of the adsorbent, g

n :

Freundlich constants

Q :

Adsorption capacity, mg/g

q e :

Adsorption capacity at equilibruim, mg/g

q m :

maximum adsorption capacity for a complete monolayer coverage

q t :

Adsorption capacity at time t, mg/g

R :

Universal gas constants, J/mol K

R L :

Dimensional separation factor

S :

Entropy change, J/mol K

t :

Time, min

T :

Temperature, K

W :

Weight of adsorbent

ARE :

average relative error

CMC :

chemically modified clay

EABS :

the sum of absolute errors

EMIB :

1-Ethyl-3-methyl imidazolium bromide

HYBRID :

the hybrid error function

GC-MS :

gas chromatography–mass spectrometry

PFO :

pseudo first order

PSO :

pseudo second order

RMSE :

root mean square error

References

  1. Theopharis GD, Triantafyllos AA, Dimitrios EP, Philip JP (1998) Water Resour 32:295–302

    Google Scholar 

  2. Sunil J, Kulkarni D, Jayant PK (2013) Review on research for removal of phenol from wastewater. Int J Sci Res Publ 3(4)

  3. Asheh S, Bana F, Aitah A (2003) Adsorption of phenol using different types of activated bentonites. Sep Purif Technol 33:1–10. https://doi.org/10.1016/s1383-5866(02)00180-6

    Article  Google Scholar 

  4. Juang RSH, Kao HCH, Tseng KJ (2010) Kinetics of phenol removal from saline solutions by solvent extraction coupled with degradation in a two-phase partitioning bioreactor. Sep Purif Technol 71(3):285–292

    Article  CAS  Google Scholar 

  5. Mahvi AH, Maleki A, Alimohamadi M, Ghasri A (2007) Photo-oxidation of phenol in aqueous solution: toxicity of intermediates. Korean J Chem Eng 24(1):79–82

    Article  CAS  Google Scholar 

  6. Canizares P, Martinez F, Garcia-Gomez J, Saez C, Rodrigo MA (2002) Combined electrooxidation and assisted electrochemical coagulation of aqueous phenol wastes. J Appl Electrochem 32:1241–1246

    Article  CAS  Google Scholar 

  7. Li HQ, Han HJ, Du MA, Wang W (2011) Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor. Bioresour Technol 102:4667–4673

    Article  CAS  Google Scholar 

  8. Bazrafshan E, Kord Mostafapour F, Faridi H, Zazouli MA (2012) Application of Moringa peregrina seed extract as a natural coagulant for phenol removal from aqueous solutions. Afr J Biotechnol 11(103):16758–16766

    CAS  Google Scholar 

  9. Namasivayam C, Muniasamy N, Gayatri K, Rani M, Ranganathan K (1996) Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresour Technol 57:37–43

    Article  Google Scholar 

  10. Sofía AC, Tzayhrí GV, Guillermo OR, Ma-del SL, Brenda GP (2005) Adsorption of phenol and dichlorophenols from aqueous solutions by porous clay heterostructure (PCH). J Mex Chem Soc 49(3):287–291

    Google Scholar 

  11. Salim B, Abdeslam HM (2014) Removal of phenol from water by adsorption onto sewage sludge based adsorbent. AIDIC 7(20):221–236

    Google Scholar 

  12. Agarry SE, Aremu MO (2012) Batch equilibrium and kinetic studies of simultaneous adsorption and biodegradation of phenol by pineapple peels immobilized Pseudomonas aeruginosa NCIB 950. Br Biotechnol J 2(1):26–48

    Article  CAS  Google Scholar 

  13. Abdel-Ghani NT, El-Chaghaby GA, Helal FS (2016) Preparation, characterization and phenol adsorption capacity of activated carbons from African beech wood sawdust. Glob J Environ Sci 2(3):209–222

    CAS  Google Scholar 

  14. Hamdaoui M, Hadri M, Bencheqroun Z, Draoui K, Nawdali M, Zaitan H, Barhoun A (2018) Improvement of phenol removal from aqueous medium by adsorption on organically functionalized Moroccan stevensite. J Mater Environ Sci 9(4):1119–1128

    Google Scholar 

  15. Lin JQ, Yang SE, Duan JM, Wu JJ, Jin LY, Lin JM, Deng QL (2017) The adsorption mechanism of modified activated carbon on phenol. MATEC Web Conf 67:03040

    Article  CAS  Google Scholar 

  16. Jameel MD, Mohammed H, Zuhair A-A (2012) A new modified porcelain adsorbent for the removal and preconcentration of toxic phenols in wastewater. IJSR 3(2):2319–7064

    Google Scholar 

  17. Mubarak NM, Sazila N, Sabzoi N, Abdullah EC, Jaya NS (2017) Adsorptive removal of phenol from aqueous solution by using carbon nanotubes and magnetic biochar. NanoWorld J 3(2):32–37

    Article  CAS  Google Scholar 

  18. Gholizadeh A, Kermani M, Gholami M, Farzadkia M (2013) Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study. J Environ Health Sci Eng 1(29):11–29

    Google Scholar 

  19. Pablo DR, Adriana SF, Leandro SO (2015) Batch and column studies of phenol adsorption by an activated carbon based on acid treatment of corn cobs. IJET 7(6):21–35

    Google Scholar 

  20. Ngo YS, Jayakumar NS, Hashim MA (2011) Behaviour of hydrophobic ionic liquids as liquid membranes on phenol removal: experimental study and optimization. Desalination 278(1–3):250–258

    Article  CAS  Google Scholar 

  21. Roosen C, Muller P, Greiner L (2008) Ionic liquids in biotechnology: applications and perspectives for biotransformation. Appl Microbiol Biotechnol 81(4):607–614

    Article  CAS  Google Scholar 

  22. Wilkes JS, Zaworotko MJ (1992) Chem. Soc., Chem. Commun 0:965–967

    Article  CAS  Google Scholar 

  23. Akpomie GK, Ogbu IC, Osunkunle AA, Abuh MA, Abonyi MN (2012) Equilibrium isotherm studies on the sorption of Pb(II) from solution by Ehandiagu clay. J Emerg Trends Eng Appl Sci (JETEAS) 3(2):354–358

    CAS  Google Scholar 

  24. Xun Y, Shu-ping Z, Wei Z, Hong-you C, Xiao-Dong D, Xin-Mei L, Zi-Feng Y (2007) Aqueous dye adsorption on ordered malodorous carbons. J Colloid Interface Sci 310:83–89

    Article  CAS  Google Scholar 

  25. Gadsden A (1985) Infrared spectra of minerals and related inorganic compounds. The Butterworth group, UK

    Google Scholar 

  26. Bazrafshan E, Mostafapour FK, Hosseini AR, Rakhsh KA, Mahvi AH (2013) Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. J Chem 1–8

  27. Popuri SR, Jammala A, Reddy KVN, Abburi K (2007) Biosorption of hexavalent chromium using tamarind (Tamarindus indica) fruit shell—a comparative study. Electron J Biotechnol (3):358–367

  28. Lide DR (2003) CRC handbook of chemistry and physics, 83rd ed. CRC Press, Boca Raton

    Google Scholar 

  29. Abonyi MN (2017) Synthesis of ionic liquid (ILs) and the novel application of ILs impregnated clay in dephenolation of petroleum effluent. Nnamdi Azikiwe university, Awka, Nigeria, Unpublished M.ENG Thesis

  30. Nagda GK, Diwan AM, Ghole VS (2007) Potential of Tendu leaf refuse for phenol removal in aqueous systems. Appl Ecol Environ Res 5(2):1–9

    Article  Google Scholar 

  31. Ekpete OA, Horsfall M, Tarawou T (2010) Potential of fluid and commercial activated carbons for phenol removal in aqueous systems, ARPN. J Eng Appl Sci 5(9):39–47

    Google Scholar 

  32. Nayak PS, Singh BK (2007) Removal of phenol from aqueous solutions by sorption on low cost clay. Desalination 207:71–79

    Article  CAS  Google Scholar 

  33. Annadurai A, Babu SR, Mahesh KPO, Murugesan T (2000) Adsorption and biodegradation of phenol by chitosan-immobilized Pseudomonas putida (NICM 2174). Bioprocess Eng 23(6):493–501

    Article  Google Scholar 

  34. Singh BK, Mridula D (2008) Sorption dynamic for removal of phenol from water and waste-water onto bituminous coal. IJERD 2(4):319–339

    Google Scholar 

  35. Dabhade MA, Saidutta MB, Murthy DVR (2009) Adsorption of phenol on granular activated carbon from nutrient medium: equilibrium and kinetic study. Int J Environ Res 3(4):557–568

    CAS  Google Scholar 

  36. Ofomaja AE, Ho YS (2007) Equilibrium sorption of anionic dye from aqueous solution by palm kernel fibre as sorbent. Dyes Pigments 74:60–66

    Article  CAS  Google Scholar 

  37. Hameed BH (2007) Equilibrium and kinetics studies of 2, 4, 6-trichlorophenol adsorption onto activated clay. Colloids Surf A Physicochem Eng Asp 307:45–52

    Article  CAS  Google Scholar 

  38. Menkiti MC, Aneke MC, Ejikeme PM, Onukwuli OD, Menkiti NU (2014) Adsorptive treatment of brewery effluent using activated Chrysophyllum albidium seed shell carbon. Springer plus. https://doi.org/10.1186/2193-1801-3-213

  39. Chan LS, Cheung WH, Allen SJ, McKay G (2012) Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon. Chin J Chem Eng 20(3):535–542

    Article  CAS  Google Scholar 

  40. Kumar SD, Subbaiah VM, Reddy AS, Krishnaiah A (2009) Bio sorption of phenolic compounds from aqueous solutions onto chitosan-abrus precatorius blended beads. J Chem Technol Biotechnol 84:972–981

    Article  CAS  Google Scholar 

  41. Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12:327–356

    Google Scholar 

  42. Hamdaouia O, Naffrechoux E (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater 147:381–394

    Article  CAS  Google Scholar 

  43. Djebbar M, Djafri F, Bouchekara M, Djafri A (2009) Adsorption of phenol on natural clay. Appl Water Sci 2(3):77–86

    Google Scholar 

  44. Seidel A, Gelbin D (1988) Applying the ideal adsorbed solution theory to multi-component adsorption equilibria of dissolved organic components on activated carbon. Chem Eng Sci 43:79–89

    Article  CAS  Google Scholar 

  45. Demirbas E, Dizge N, Sulak MT, Kobya M (2009) Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chem Eng J 148:480–487

    Article  CAS  Google Scholar 

  46. Low KS, Lee CK, Liew SC (2007) Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem 36:59–64

    Article  Google Scholar 

  47. Gupta SS, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Colloid Interface 162:39–58

    Article  CAS  Google Scholar 

  48. Vinod VP, Anindhan (2002) Treatment of phenol rich aqueous solution using surface modified pillared clay. Indian J Eng Mater Sci 9(4):128–136

    CAS  Google Scholar 

  49. Verma A, Chakraborty S, Basu JK (2006) Adsorption study of hexavalent chromium using tamarind hull based adsorptions. Sep Purif Technol 50:336–341

    Article  CAS  Google Scholar 

  50. Wang HL, Chen JL, Zhai ZC (2004) Study on thermodynamics and kinetics of adsorption of p-toluidine from aqueous solution by hypercrosslinked polymeric adsorbents. Environ Chem 23(2):188–192

    CAS  Google Scholar 

  51. Yuh-Shan H, Wen-Ta C, Chung-Chi W (2005) Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresour Technol 96:1285–1291

    Article  CAS  Google Scholar 

  52. Mahvi AH, Maleki A, Eslami A (2004) Potential of rice husk and rice husk ash for phenol removal in aqueous system. Am J Appl Sci 1(4):321–326

    Article  CAS  Google Scholar 

  53. Fu QL, Deng YL, Li HS, Liu J, Hua HQ, Chen QS, Sa TM (2009) Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp kurstaki by clay minerals. Appl Surf Sci 255:4551–4557

    Article  CAS  Google Scholar 

  54. Okolo B, Park C, Keane MA (2000) Interaction of phenol and chlorophenols with activated carbon and synthetic zeolites in aqueous media. J Colloid Interface Sci 226:308–317

    Article  CAS  Google Scholar 

  55. Bazrafshan E, Mostafapour FK, Rahdar S, Mahvi H (2015) Equilibrium and thermodynamics studies for decolorization of reactive black 5 (RB5) by adsorption onto MWCNTs. Desalin Water Treat 54:2241–2245

    Article  CAS  Google Scholar 

  56. Canizares P, Carmona M, Baraza O, Delgado O, Rodrigo MA (2006) Adsorption equilibrium of phenol onto chemically modified activated carbon F400. J Hazard Mater 131:243–248

    Article  CAS  Google Scholar 

  57. Bhatnagar A, Sillanpaa M (2014) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-a review. Chem Eng J 157:277–296

    Article  CAS  Google Scholar 

  58. Alkaram UF, Mukhlis AA, Al-Dujaili AH (2009) The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J Hazard Mater 169:324–332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Menkiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menkiti, M.C., Abonyi, M.N. & Aniagor, C.O. Process Equilibrium, Kinetics, and Mechanisms of Ionic-Liquid Induced Dephenolation of Petroleum Effluent. Water Conserv Sci Eng 3, 205–220 (2018). https://doi.org/10.1007/s41101-018-0052-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41101-018-0052-8

Keywords

Navigation