Skip to main content
Log in

Channel dynamics associated with land use/cover change in Ganges river, India, 1989–2010

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Shifting river courses and braiding in large rivers are part and parcel in fluvial morphology. The study aims at probing the changes of the Ganges river courses with accompanying land use/land cover characteristics. Here the changes that took place over a period ranging a couple of decades were recorded using multi-temporal Landsat 4–5 Thematic Mapper data. Meander geometry was precisely estimated. River course change pattern along with the changes in land use/land cover were studied over the period of 21 years (1989–2010). Results showed 0.14 km bank erosion and 0.85 km valley area was prone to erosion during the entire study period. The study exhibited the active channel area decreased by 22.88 km2 (0.33 % of the original river course) from 1989 to 2010. Land use characteristics showed settlement and plantation with settlement and crop lands were increased, whereas agricultural land was decreased in the study area. The overall kappa statistics were recorded as more than 0.84 during the study period. Rivers tend to maintain its high volume flow by eschewing additional silt load through bank overflow, called flash flooding; which is a natural process for any river to maintain the health of its thalweg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. El Bastawesy, M., White, K. H., & Gabr, S. (2013). Hydrology and geomorphology of the Upper White Nile Lakes and their relevance for water resources management in the Nile basin. Hydrological Processes, 27, 196–205. doi:10.1002/hyp.9216.

    Article  Google Scholar 

  2. Bandyopadhya, S., Mukherjee, D., Bag, S., Pal, D. K., Das R.K., & Rudra, K. (2004). 20th century evolution of banks and islands of the Hugli Estuary, West Bengal, India: Evidences from maps, images and GPS survey (pp. 235–263). Geomorphology and Environment (Editd.). Kolkata: ACB Publications.

  3. Kummu, M., Lu, X. X., Rasphone, A., Sarkkula, J., & Koponen, J. (2008). Riverbank changes along the Mekong River: Remote sensing detection in the Vientiane–Nong Khai area. Quaternary International, 186(1), 100–112.

    Article  Google Scholar 

  4. Kuehl, S. A., Allison, M. A., Goodbred, S. L., & Kudrass, H. (2005). The Ganges–Brahmaputra Delta. Society for Sedimentary Geology, 83, 413–434.

    Google Scholar 

  5. Best, J. L., & Bristow, C. S. (1999). Braided rivers. Geological Society Special Publication No. 75, pp. 1–11.

  6. Al-Harbi, K. M. (2010). Monitoring of agricultural area trend in Tabuk region–Saudi Arabia using Landsat TM and SPOT data. The Egyptian Journal of Remote Sensing and Space Sciences, 13, 37–42.

    Article  Google Scholar 

  7. Uddin, K., Shrestha, B., & Alam, M. S. (2011). Assessment of morphological changes and vulnerability of river bank erosion alongside the river Jamuna using remote sensing. Journal of Earth Science and Engineering, 1, 29–34.

    Google Scholar 

  8. Islam, M. N. (2006). Braiding morphodynamics of the Brahmaputra–Jamuna River (pp. 11–47). Dhaka: A H Development Publishing House.

    Google Scholar 

  9. Fuller, I. C., Large, A. R. G., & Milan, D. J. (2003). Quantifying channel development and sediment transfer following chute-off in a wandering gravel-bed river. Geomorphology, 54, 307–323.

    Article  Google Scholar 

  10. Rinaldi, M. (2003). Recent channel adjustments in alluvial rivers of Tuscany, central Italy. Earth Surface Processes and Landforms, 28, 587–608.

    Article  Google Scholar 

  11. Khan, N. I., & Islam, A. (2003). Quantification of erosion patterns in the Brahmaputra–Jamuna River using geographical information system and remote sensing techniques. Hydrological Processes, 17, 959–966.

    Article  Google Scholar 

  12. Gayen, S., Bhunia, G. S., & Shit, P. K. (2013). Morphometric analysis of Kangshabati–Darkeswar interfluves area in West Bengal, India using ASTER DEM and GIS techniques. J Geology and Geoscience, 2, 133. doi:10.4172/2329-6755.1000133.

    Google Scholar 

  13. Foulds, S. A., & Macklin, M. G. (2006). Holocene land-use change and its impact on river basin dynamics in Great Britain and Ireland. Progress in Physical Geography, 30, 589–604.

    Article  Google Scholar 

  14. Wang, S. Y., Liub, J. S., & Mac, T. B. (2010). Dynamics and changes in spatial patterns of land use in Yellow River Basin, China. Land Use Policy, 27(2), 313–323.

    Article  Google Scholar 

  15. Ellery, W. E., Dahlberg, A. C., Strydom, R., Neal, M. J., & Jackson, J. (2003). Diversion of water flow from a floodplain wetland stream: An analysis of geomorphological setting and hydrological and ecological consequences. Journal of Environmental Management, 68, 51–71.

    Article  Google Scholar 

  16. Reddy, C. S., Rangaswamy, M., & Jha, C. S. (2008). Monitoring of spatio-temporal changes in part of Kosi River Basin, Bihar, India using remote sensing and geographical information system. Research Journal of Environmental Sciences, 2, 58–62.

    Article  Google Scholar 

  17. Abou, El-Magd Islam, Hermas, El Sayed, & Bastawesy, M. E. (2010). GIS-modelling of the spatial variability of flash flood hazard in Abu Dabbab catchment, Red Sea Region, Egypt. The Egyptian Journal of Remote Sensing and Space Sciences, 13, 81–88.

    Article  Google Scholar 

  18. Sarkar, A., Garg, R. D., & Sharma, N. (2012). RS–GIS based assessment of river dynamics of Brahmaputra River in India. Journal of Water Resource and Protection, 4, 63–72.

    Article  Google Scholar 

  19. Sarma, J. N., Borah, D., & Goswami, U. (2007). Change of river channel and bank erosion of the Burhi Dihing River (Assam), assessed using remote sensing data and GIS. Journal of Indian Society of Remote Sensing, 35(1), 94–100.

    Article  Google Scholar 

  20. Yang, X., Damen, M. C. J., & van Zuidam, R. A. (1999). Satellite remote sensing and GIS for the analysis of channel migration changes in the active Yellow River Delta, China. International Journal of Applied Earth Observa tion and Geoinformation, 1(2), 146–157.

    Article  Google Scholar 

  21. Deb, M., Das, D., & Uddin, M. (2012). Evaluation of meandering characteristics using RS & GIS of Manu River. Journal of Water Resource and Protection, 4, 163–171.

    Article  Google Scholar 

  22. Das, J. D., & Saraf, A. K. (2007). Remote sensing in the map-ping of the Brahmaputra/Jamuna River channel patterns and its relation to various landforms and tectonic environment. International Journal of Remote Sensing, 28(16), 3619–3631.

    Article  Google Scholar 

  23. Flood Management Improvement Support Centre (FMISC). (2012). Flood report 2012. Water Resources Department, Government of Bihar. http://fmis.bih.nic.in/FloodReport-2012.pdf.

  24. Mitra, D., Tangri, A. K., & Singh, I. B. (2005). Channel avulsion of the Sarda River system, Ganga plain. International Journal of Remote Sensing, 26(5), 929–936.

    Article  Google Scholar 

  25. Geddes, A. (1960). The alluvial morphology of the Indo-Gangetic Plain: It’s mapping geographical significance. Institute of British Geographers, 28, 253–277.

    Google Scholar 

  26. Census of India. (2011). http://www.censusindia.gov.in/2011census/dchb-/1018_PART_B_DCHB_VAISHALI.pdf.

  27. Central Ground Water Board (CGWB). (2007). Ground water information booklet of Vaishali district, Bihar state. Ministry of Water Resources (Govt. of India), Mid-Eastern Region, Patna. https://www.google.co.in/?gfe_rd=cr-&ei=iPjnVenBfTH8AfhbTIAQ&gws_rd=ssl#q=groundwater-+vaishali+district.

  28. Yao, Z., Xiao, J., Ta, W., & Jia, X. (2013). Planform channel dynamics along the Ningxia-Inner Mongolia reaches of the Yellow River from 1958 to 2008: Analysis using Landsat images and topographic maps. Environmental Earth Sciences, 70, 97–106.

    Article  Google Scholar 

  29. Tiegs, S. D., & Pohl, M. (2005). Planform channel dynamics of the lower Colorado River: 1976–2000. Geomorphology, 69, 14–27.

    Article  Google Scholar 

  30. Schumm, S. A. (1963). Sinuosity of alluvial rivers on the Great Plains. Geological Society of America Bulletin, 74, 1089–1100.

    Article  Google Scholar 

  31. Garg, S. K. (1987). Irrigation engineering and hydraulic structures (pp. 362–365). Delhi: Khanna Publishers.

    Google Scholar 

  32. Brice, J. C. (1964). Channel patterns and terraces of the Loup River in Nebraska. U.S. Geological Survey Professional Paper 422-D, pp. 41.

  33. Schumm, S. A. (1977). The fluvial system. New York: Wiley.

    Google Scholar 

  34. Lillesand, R. M., & Kiefer, R. W. (2000). Remote sensing and image interpretation (4th ed.). New York: Wiley.

    Google Scholar 

  35. Landgrebe, D. A. (2003). Signal theory methods in multispectral remote sensing (p. 508). Hoboken, NJ: Wiley.

    Book  Google Scholar 

  36. Jensen, J. R. (2004). Introductory digital image processing—A remote sensing perspective (3rd ed., p. 544). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  37. Congalton, R. G. (1991). A review of assessing the accuracy of classification of remotely sensed data. Remote Sensing of Environment, 37, 35–46.

    Article  Google Scholar 

  38. Thierry, B., & Lowell, K. (2001). An uncertainty-based method of photointerpretation. Photogrammetric Engineering and Remote Sensing, 67, 65–72.

    Google Scholar 

  39. Ballester, M. V. R., Victoria, D. D. C., Krusche, A. V., Coburn, R., Victoria, R. L., Richey, J. E., et al. (2003). A remote sensing/GIS-based physical template to understand the biogeochemistry of the Ji-Paraná River Basin (Western Amazônia). Remote Sensing of Environment, 87, 429–445.

    Article  Google Scholar 

  40. Lu, D., Mausel, P., Batistella, M., & Moran, E. (2004). Comparison of land-cover classification methods in the Brazilian Amazon Basin. Photogrammetric Engineering and Remote Sensing, 70(6), 723–731.

    Article  Google Scholar 

  41. Story, M., & Congalton, R. G. (1986). Accuracy assessment: A user’s perspective. Photogrammetric Engineering and Remote Sensing, 52, 397–399.

    Google Scholar 

  42. Campbell, J. B. (2002). Introduction to remote sensing. London: Taylor & Francis.

    Google Scholar 

  43. Congalton, R. G., & Green, K. (1999). Assessing the accuracy of remotely sensed data: Principles and practices. Boca Raton: Lewis Publishers.

    Google Scholar 

  44. Hudson, W., & Ramm, C. (1987). Correct formulation of the kappa coefficient of agreement. Photogrammetric Engineering & Remote Sensing, 53(4), 421–422.

    Google Scholar 

  45. Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey Professional Paper 964.

  46. Bhunia, G. S., & Shit, P. K. (2013). Identification of temporal dynamics of vegetation coverage using remote sensing and GIS (a case study of western part of West Bengal, India). International Journal of Current Research, 5(3), 652–658.

    Google Scholar 

  47. Shaoqing, Z., Lu X. (2008). The comparative study of three methods of remote sensing image change detection. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. XXXVII, Part B7), Beijing 2008. http://www.isprs.org/proceedings/XXXVII/congress/7_-pdf/10_ThS-18/12.pdf.

  48. Leopold, L. B., & Wolman, M. G. (1960). River meanders. Geological Society of America Bulletin, 71, 769–793.

    Article  Google Scholar 

  49. Roy, N., & Sinha, R. (2007). Understanding confluence dynamics in the alluvial Ganga-Ramganga valley, India: an integrated approach using geomorphology and hydrology. Geomorphology, 92, 182–197.

    Article  Google Scholar 

  50. Hazarika, N., Das, A. K., & Borah, S. B. (2015). Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using RS–GIS techniques. The Egyptian Journal of Remote Sensing and Space Sciences, 18, 107–118.

    Article  Google Scholar 

  51. Lewis, G. W., & Lewin, J. (1983). Alluvial cutoffs in Wales and the Borderlands. Special Publ. No. 6, International Association of Sedimentologists, NY, pp. 145–154.

  52. Mutton, D., & Haque, C. E. (2004). Human vulnerability, dislocation and resettlement: Adaptation process of river-bank erosion-induced displacees in Bangladesh. Disasters, 28(1), 41–62.

    Article  Google Scholar 

  53. Thakur, P. K., Laha, C., & Aggarwal, S. P. (2011). River bank erosion hazard study of river Ganga, upstream of Farakka barrage using remote sensing and GIS. Natural Hazards, 61(3), 967–987.

    Article  Google Scholar 

  54. Singh, D. S., & Awasthi, A. (2011). Natural hazards in Ghaghara River Area, Ganga Plain, India. Natural Hazards, 57, 213–225.

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank USGS Earth Explorer Community for providing free satellite data. We are very much thankful to the eminent reviewers for their valuable comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gouri Sankar Bhunia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 10 kb)

Supplementary material 2 (TIFF 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, G.S., Shit, P.K. & Pal, D.K. Channel dynamics associated with land use/cover change in Ganges river, India, 1989–2010. Spat. Inf. Res. 24, 437–449 (2016). https://doi.org/10.1007/s41324-016-0045-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-016-0045-7

Keywords

Navigation