Skip to main content
Log in

Monitoring changing course of the river Ganga and land-use dynamicity in Manikchak Diara of Malda district, West Bengal, India, using geospatial tools

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Dynamicity of the river Ganga introduces significant changes in the land-use character of active alluvial plain of West Bengal, India. The dynamicity of the river Ganga is caused due to continuous sedimentation and formation of char land which frequently changes the flow direction and flow velocity of running water as well as causes the shifting of the bank line due to active bank erosion processes in the upstream of Farakka Barrage. Bank line shifting was estimated with the help of 25 transects since 1973–2011. A large-scale land erosion (38.6 sq. km area) occurred due to the bank line shifting which observed in Godai, Kesharpur, Rambari, Hiranandapur, Mathurapur, Manikchak, Samastipur, Dakshin Chandipur, and Gopalpur mouzas of Manikchak block, whereas deposition (2.4 sq. km area) was found in Chandipur Tofi Narayanpur and Govindapur mouzas. Such erosion and deposition invited a lot of changes in land-use statistics. Land-use–land-cover maps were prepared using supervised image classification techniques and validated through kappa statistics (kappa coefficient 0.803 and 0.892 for the year 1994 and 2016, respectively). Land-use change detection technique was used to identify the transformation of land-use character from one feature to another. This study revealed that a notable area of settlement (5.07 sq. km) and vegetation cover (6.84 sq. km) was converted into water body as a result of bank erosion. Loss of agricultural land and homestead led to the loss of livelihood and introduced internal migration. The observed pattern of river dynamics and the consequent land-use change in the recent decades have shown newer environmental challenges to the coping capabilities of the rural inhabitants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brady, N. C. (1990). The nature and properties of soils. New Delhi: Prentice Hall.

    Google Scholar 

  2. Ghosh, S., & Bhattacharya, K. (2012). Multivariate erosion risk assessment of lateritic badlands of Birbhum (West Bengal, India): A case study. Journal of Earth System Science. https://doi.org/10.1007/s12040-012-0243-1.

    Article  Google Scholar 

  3. Islam, M. D. F., & Rashid, A. N. M. B. (2011). Riverbank erosion displaces in Bangladesh: Need for institutional response and policy intervention. Bangladesh Journal of Bioethics. https://doi.org/10.3329/bioethics.v2i2.9540.

    Article  Google Scholar 

  4. Rosgen, D. L. (1993). Stream classification, stream bank erosion and fluvial interpretations for the Lamar River and main tributaries. Technical Report of USDI Park Service. Yellowstone National Park.

  5. Das, J. D., Dutta, T., & Saraf, A. K. (2007). Remote sensing and GIS application in change detection of the Barak river channel, N.E. India. Journal of the Indian Society of Remote Sensing, 35(4), 301–312.

    Article  Google Scholar 

  6. Das, J. D., & Saraf, A. K. (2007). Technical note: Remote sensing in the mapping of the Brahmaputra/Jamuna river channel patterns and its relation to various landforms and tectonic environment. International Journal of Remote Sensing, 28(16), 3619–3631.

    Article  Google Scholar 

  7. Pati, J. K., Lal, J., Prakash, K., & Bhusan, R. (2008). Spatio-temporal shift of western bank of the Ganga River at Allahabad city and its implications. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-008-0030-2.

    Article  Google Scholar 

  8. Phillip, G., Gupta, R. P., & Bhatatcharya, A. B. (1989). Channel migration studies in the middle Ganga basin, India using remote sensing. International Journal of Remote Sensing, 10(6), 1141–1149.

    Article  Google Scholar 

  9. Tangri, A. K. (2000). Application of remote sensing techniques in monitoring the spatial and temporal evolution of fluvio-geomorphic features in Ganga basin with specific reference to their impact on engineering structures. In R. Sinha (Ed.), Proceedings of the workshop on fluvial geomorphology with special reference to floodplains. Kanpur: Indian Institute of Technology.

  10. Thakur, P. K., Laha, C., & Aggarwal, S. P. (2012). River bank erosion hazard study of river Ganga, upstream of Farakka barrage using remote sensing and GIS. Natural Hazards. https://doi.org/10.1007/s11069-011-9944-z.

    Article  Google Scholar 

  11. Chakraborty, T., Kar, R., Ghosh, P., & Basu, K. (2010). Kosi megafun: Historical records, geomorphology and the recent avulsion of the Kosi River. Quaternary International. https://doi.org/10.1016/j.quaint.2009.12.002.

    Article  Google Scholar 

  12. Jain, V., & Sinha, R. (2003) Hyperavulsive-anabranching Baghmati river system, North Bihar plains, eastern India. Zeitschrift fur Geomorphologie, N.F. 47 (1), 102–115.

  13. Bridge, J. S. (2003). Rivers and floodplains—Forms, processes and sedimentary records. Oxford: Blackwell.

    Google Scholar 

  14. Panniza, M. (1996). Environmental geomorphology. Amsterdam: Elsevier.

    Google Scholar 

  15. Mandal, J., Debanshi, S., & Mandal, S. (2016). Dynamicity of the river Ganga and Bank Erosion Induced Land Loss in Manikchak Diara of Malda district of West Bengal, India: A RS and GIS based Geo-spatial approach. International Journal of Applied Remote Sensing and GIS, 3(1), 43–56. http://www.gssjournals.org/Research_Paper/Volume%203,%20Issue%201,%20June-2016/6_Jayanta_Mandal.pdf.

  16. Rudra, K. (2010). Dynamics of the Ganga in West Bengal, India (1764–2007): Implications for science–policy interaction. Quaternary International. https://doi.org/10.1016/j.quaint.2009.10.043.

    Article  Google Scholar 

  17. Haque, C. E., & Zaman, M. Q. (1989). Coping with riverbank erosion hazard and displacement in Bangladesh: Survival strategies and adjustments. Disasters. https://doi.org/10.1111/j.1467-7717.1989.tb00724.x.

    Article  Google Scholar 

  18. Islam, A., & Guchhait, S. K. (2017). Analysing the influence of Farakka Barrage Project on channel dynamics and meander geometry of Bhagirathi river of West Bengal, India. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-3004-2.

    Article  Google Scholar 

  19. Guchhait, S. K., Islam, A., Ghosh, A., Das, B. C., & Maji, N. K. (2016). Role of hydrological regime and floodplain sediments in channel instability of the Bhagirathi River, Ganga-Brahmaputra Delta, India. Physical Geography. https://doi.org/10.1080/02723646.2016.1230986.

    Article  Google Scholar 

  20. Ahmad, F., Goparaju, L., & Qayum, A. (2017). LULC analysis of urban spaces using Markov chain predictive model at Ranchi in India. Spatial Information Research. https://doi.org/10.1007/s41324-017-0102-x.

    Article  Google Scholar 

  21. Emiru, T., Naqvi, H. R., & Athick, M. A. (2018). Anthropogenic impact on land use land cover: Influence on weather and vegetation in Bambasi Wereda, Ethiopia. Spatial Information Research. https://doi.org/10.1007/s41324-018-0186-y.

    Article  Google Scholar 

  22. Kara, F., & Keçeli, A. (2017). Impact of rapid urbanisation on land cover in Istanbul Province. Spatial Information Research. https://doi.org/10.1007/s41324-017-0100-z.

    Article  Google Scholar 

  23. Sahoo, S., Dhar, A., Kayet, N., & Kar, A. (2017). Detecting water stress scenario by land use/land cover changes in an agricultural command area. Spatial Information Research. https://doi.org/10.1007/s41324-016-0073-3.

    Article  Google Scholar 

  24. Selcuk, R., Nisanci, R., Uzun, B., Yalcin, A., Inan, H., & Yomralioglu, T. (2003). Monitoring land-use changes by GIS and remote sensing techniques: Case study of Trabzon. http://www.fig.net/pub/morocco/proceedings/TS18/TS18_6_reis_el_al.pdf.

  25. Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Sciences, 18(1), 77–84. https://doi.org/10.1016/j.ejrs.2015.02.002.

    Article  Google Scholar 

  26. Banerjee, M. (1999). A report on the impact of Farakka Barrage on the human fabric, On behalf of South Asian network on dams, rivers and people (SANDRP). http://www.sandrp.in/dams/impact_frka_wcd.pdf.

  27. District human development report: Malda. (2007). HDRCC and Development & Planning Department. Kolkata: Government of West Bengal.

  28. Keshkar, G., et al. (1996). Report of experts committee for bank erosion problem of river Ganga–Padma in the districts of Malda and Murshidabad. Planning Commission, Government of India, 1–71.

  29. Bandyopadhyay, S., Ghosh, K., & De, S. K. (2014). A proposed method of bank erosion vulnerability zonation and its application on the River Haora, Tripura, India. Geomorphology. https://doi.org/10.1016/j.geomorph.2014.07.018.

    Article  Google Scholar 

  30. Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective (3rd ed., pp. 467–494). New York: Pearson Prentice Hall.

    Google Scholar 

  31. Zhang, Y., Odeh, I. O., & Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 11(4), 256–264.

    Article  Google Scholar 

  32. SCGE. (2011). Supervised/unsupervised land use land Cover classification using ERDAS imagine. Summer Course Computational Geoecology. http://horizon.science.uva.

  33. Kumar, P., Sharma, L. K., Pandey, P. C., Sinha, S., & Nathawat, M. S. (2013). Geospatial strategy for tropical forest-wildlife reserve biomass estimation. IEEE Journal of Applied Earth Observations and Remote Sensing, 6(2), 917–923.

    Article  Google Scholar 

  34. Chakraborty, R., Talukdar, S., Basu, T., et al. (2018). Habitat identity crisis caused by the riparian wetland squeeze in Tangon River Basin, Barind Region, India. Spatial Information Research. https://doi.org/10.1007/s41324-018-0193-z.

    Article  Google Scholar 

  35. Pal, S., & Ziaul, S. K. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science. https://doi.org/10.1016/j.ejrs.2016.11.003.

    Article  Google Scholar 

  36. Saha, T. K., & Pal, S. (2018). Emerging conflict between agriculture extension and physical existence of wetland in post-dam period in Atreyee River basin of Indo-Bangladesh. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-018-0099-x.

    Article  Google Scholar 

  37. Owojori, A., & Xie, H. (2005). Landsat image-based LULC changes of San Antonio, Texas using advanced atmospheric correction and object-oriented image analysis approaches. Presented at the 5th international symposium on remote sensing of urban areas, Tempe, AZ.

  38. Monserud, R. A., & Leemans, R. (1992). Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62, 275–293.

    Article  Google Scholar 

  39. Weng, Q. (2001). A remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, southern China. International Journal of Remote Sensing. https://doi.org/10.1080/713860788.

    Article  Google Scholar 

  40. Das, B., Mondal, M., & Das, A. (2012). Monitoring of bank line erosion of river Ganga, Malda district, and West Bengal: Using RS and GIS compiled with statistical techniques. International Journal of Geomatics and Geosciences, 3(1), 239–248.

    Google Scholar 

  41. Kuehl, S. A., Allison, M. A, Goodbred, S. L., & Kudrass, H. (2005). In river deltas: Concepts, models and examples. Journal of the Society for Sedimentary Geology (SEPM); Special Publication No. 83, eds Giosan L, Bhattacharya (Society for Sedimentary Geology, Tulsa, OK) (pp. 413–434).

  42. Lundberg, N., & Uddin, A. (2004). Miocene sedimentation and subsidence during continent collision, Bengal basin, Bangladesh. Sedimentary Geology. https://doi.org/10.1016/j.sedgeo.2003.09.004.

    Article  Google Scholar 

  43. Brooks, G. R. (2005). Overbank deposition along the concave side of the Red River meanders, Manitoba, and its geomorphic significance. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.1219.

    Article  Google Scholar 

  44. Mandal, S. (2017). Assessing the instability and shifting character of the river bank ganga in Manikchak Diara of Malda district, west bengal using bank erosion hazard index (BEHI), RS & GIS. European Journal of Geography, 8(4), 6–25.

    Google Scholar 

  45. Lahiri-Dutt, K., & Samanta, G. (2007). ‘Like the Drifting Grains of Sand’: Vulnerability, security and adjustment by communities in the Charlands of the Damodar River, India. South Asia: Journal of South Asian Studies, 3, 5–6. https://doi.org/10.1080/00856400701499268.

    Article  Google Scholar 

  46. Adeyeri, O. E., Akinsanola, A. A., & Ishola, K. A. (2017). Investigating surface urban heat island characteristics over Abuja, Nigeria: Relationship between land surface temperature and multiple vegetation indices. Remote Sensing Applications: Society and Environment. https://doi.org/10.1016/j.rsase.2017.06.005.

    Article  Google Scholar 

  47. Babalola, O. S., & Akinsanola, A. A. (2016). Change detection in land surface temperature and land use land cover over lagos metropolis, Nigeria. Journal Remote Sensing & GIS. https://doi.org/10.4172/2469-4134.1000171.

    Article  Google Scholar 

  48. Mahato, S., & Pal, S. (2018). Changing land surface temperature of a rural Rarh tract river basin of India. Remote Sensing Applications: Society and Environment. https://doi.org/10.1016/j.rsase.2018.04.005.

    Article  Google Scholar 

  49. Ogunjobi, K. O., Daramola, M. T., & Akinsanola, A. A. (2018). Estimation of surface energy fluxes from remotely sensed data over Akure, Nigeria. Spatial Information Research. https://doi.org/10.1007/s41324-017-0149-8.

    Article  Google Scholar 

  50. Islam, A., & Guchhait, S. K. (2018). Search for social justice for the victims of erosion hazard along the banks of river Bhagirathi by hydraulic control: A case study of West Bengal, India. Chinese Geographical Science. https://doi.org/10.1007/s11769-018-0937-7.

    Article  Google Scholar 

  51. Rudra, K. (2014). Changing river courses in the western part of the Ganga–Brahmaputra delta. Geomorphology. https://doi.org/10.1016/j.geomorph.2014.05.013.

    Article  Google Scholar 

  52. Sinha, R., & Ghosh, S. (2012). Understanding dynamics of large rivers aided by satellite remote sensing: A case study from Lower Ganga plains, India. Geocarto International. https://doi.org/10.1080/10106049.2011.620180.

    Article  Google Scholar 

  53. Das, T. K., Haldar, S. K., Gupta, I. D., & Sen, S. (2014). River bank erosion induced human displacement and its consequences. Living Review of Landscape Research, 8(3), 1–35.

    Google Scholar 

  54. Sinha, R., Bapalu, G. V., Singh, L. K., & Rath, B. (2008). Flood risk analysis in the Kosi river basin, north Bihar using multi-parametric approach of analytical hierarchy process (AHP). Journal of the Indian Society of Remote Sensing, 36(4), 335–349.

    Article  Google Scholar 

  55. Khan, M. M. H., Bryceson, I., Kolivras, K. N., et al. (2015). Natural disasters and land-use/land-cover change in the southwest coastal areas of Bangladesh. Regional Environmental Change. https://doi.org/10.1007/s10113-014-0642-8.

    Article  Google Scholar 

  56. Pal, S., & Talukdar, S. (2018). Assessing the role of hydrological modifications on land use/land cover dynamics in Punarbhaba river basin of Indo-Bangladesh. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-018-0205-0.

    Article  Google Scholar 

  57. Maiti, S., Satpathy, R., Bandyopadhyay, J., & Jeyaseelan, A. P. T. (2015). Forest change monitoring of Ghatsila, Musabani and Dhalbhumgarh Block of East Singbhum District, Jharkhand State using image subtraction, image ratioing and SAM classification method. Journal of Remote Sensing & GIS, 6(1), 37–42.

    Google Scholar 

  58. Reddy, A., Kumar, M., Kumar, H. H., & Shivapur, A. V. (2017). Land use land cover change detection on Kanchinegalur sub watershed using GIS and remote sensing technique. International Journal for Research in Applied Science and Engineering Technology, 5(XI), 2128–2136.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Indian Council of Social Science Research (ICSSR) (Grant No. 02/94/SC/2016-17/RP), India, for the financial assistance accomplish the study on river bank erosion in Malda district, West Bengal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, J., Mandal, S. Monitoring changing course of the river Ganga and land-use dynamicity in Manikchak Diara of Malda district, West Bengal, India, using geospatial tools. Spat. Inf. Res. 26, 691–704 (2018). https://doi.org/10.1007/s41324-018-0210-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-018-0210-2

Keywords

Navigation