Skip to main content
Log in

Thermofluidic Transport in Droplets under Electromagnetic Stimulus: A Comprehensive Review

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

In the vast expanse and scope of fluid mechanics, thermal and species transport, droplets have carved out an important niche for themselves. These microscopic fluid entities, bounded to shape by surface tension and/or interfacial forces, play important roles in variant capacities in the physical world, biological systems as well as man-made technological applications. Thereby, understanding of droplet dynamics is an essential area in research and development. To add to the complexity of interfacial thermofluidic transport in droplets, presence of electric and/or magnetic fields yields interesting and rich physics to the problem. Additionally, such field-induced transport in droplets has found applications in several systems, ranging from macro- to microscale. Consequently, research on the physics of thermofluidic transport in the presence of electromagnetic stimulus has gained wide attention in the academic community. The present article discusses the present status of research, development and knowledge base on the topic. The physics of the problem, scope and extent of work realized by the academic community till date, potential applications and future directions have been discussed in an effort to provide a comprehensive review. The article shall be able to provide the readers a precis of the research and developmental work in the field thus far and acquaint them with an idea of the path ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sirignano WA (1999) Fluid dynamics and transport of droplets and sprays. Cambridge University Press, Cambridge

    Google Scholar 

  2. Abramzon B, Sirignano WA (1989) Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transf 32(9):1605–1618

    CAS  Google Scholar 

  3. Tolman RC (1949) The effect of droplet size on surface tension. J Chem Phys 17(3):333–337

    CAS  Google Scholar 

  4. Roe RJ, Bacchetta VL, Wong PMG (1967) Refinement of pendent drop method for the measurement of surface tension of viscous liquid. J Phys Chem 71(13):4190–4193

    CAS  Google Scholar 

  5. Boucher EA, Evans MJB (1975) Pendent drop profiles and related capillary phenomena. Proc R Soc Lond A 346(1646):349–374

    Google Scholar 

  6. Harikrishnan AR, Dhar P, Agnihotri PK, Gedupudi S, Das SK (2017) Effects of interplay of nanoparticles, surfactants and base fluid on the surface tension of nanocolloids. The Eur Phys J E 40(5):53

    CAS  Google Scholar 

  7. Stauffer CE (1965) The measurement of surface tension by the pendant drop technique. J Phys Chem 69(6):1933–1938

    CAS  Google Scholar 

  8. Yarin AL, Pfaffenlehner M, Tropea C (1998) On the acoustic levitation of droplets. J Fluid Mech 356:65–91

    CAS  Google Scholar 

  9. Yarin AL, Brenn G, Kastner O, Rensink D, Tropea C (1999) Evaporation of acoustically levitated droplets. J Fluid Mech 399:151–204

    CAS  Google Scholar 

  10. Benmore CJ, Weber JKR (2011) Amorphization of molecular liquids of pharmaceutical drugs by acoustic levitation. Phys Rev X 1(1):011004

    Google Scholar 

  11. Basu S, Saha A, Kumar R (2012) Thermally induced secondary atomization of droplet in an acoustic field. Appl Phys Lett 100(5):054101

    Google Scholar 

  12. Mandal DK, Bakshi S (2012) Internal circulation in a single droplet evaporating in a closed chamber. Int J Multiph Flow 42:42–51

    CAS  Google Scholar 

  13. Mandal DK, Bakshi S (2012) Evidence of oscillatory convection inside an evaporating multicomponent droplet in a closed chamber. J Colloid Interface Sci 378(1):260–262

    CAS  Google Scholar 

  14. Jaiswal V, Harikrishnan AR, Khurana G, Dhar P (2018) Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets. Phys Fluids 30(1):012113

    Google Scholar 

  15. Yamamoto Y, Abe Y, Fujiwara A, Hasegawa K, Aoki K (2008) Internal flow of acoustically levitated droplet. Microgravity Sci Technol 20(3–4):277

    Google Scholar 

  16. Raj MD, Mandal DK, Navaneethakrishnan S, Bakshi S (2010) Measurement of the surface concentration (liquid) of an evaporating multicomponent droplet using pendant droplet method. Exp Fluids 48(4):715–719

    CAS  Google Scholar 

  17. Somasundaram S, Anand TNC, Bakshi S (2015) Evaporation-induced flow around a pendant droplet and its influence on evaporation. Phys Fluids 27(11):112105

    Google Scholar 

  18. Harikrishnan AR, Dhar P (2018) Optical thermogeneration induced enhanced evaporation kinetics in pendant nanofluid droplets. Int J Heat Mass Transf 118:1169–1179

    CAS  Google Scholar 

  19. Godsave GAE (1953) Studies of the combustion of drops in a fuel spray—the burning of single drops of fuel. In: Symposium (International) on Combustion, vol 4, no. 1, pp 818–830. Elsevier

  20. Williams FA (1958) Spray combustion and atomization. Phys Fluids 1(6):541–545

    Google Scholar 

  21. Martinsson BG (1996) Physical basis for a droplet aerosol analysing method. J Aerosol Sci 27(7):997–1013

    CAS  Google Scholar 

  22. Munthali DC, Scopes NE (1982) A technique for studying the biological efficiency of small droplets of pesticide solutions and a consideration of the implications. Pest Manag Sci 13(1):60–62

    Google Scholar 

  23. Weathers PJ, Zobel RW (1992) Aeroponics for the culture of organisms, tissues and cells. Biotechnol Adv 10(1):93–115

    CAS  Google Scholar 

  24. Kumai M (1973) Arctic fog droplet size distribution and its effect on light attenuation. J Atmos Sci 30(4):635–643

    Google Scholar 

  25. Charlson RJ, Seinfeld JH, Nenes A, Kulmala M, Laaksonen A, Facchini MC (2001) Reshaping the theory of cloud formation. Science 292(5524):2025–2026

    CAS  Google Scholar 

  26. Harikrishnan AR, Dhar P, Agnihotri PK, Gedupudi S, Das SK (2017) Wettability of complex fluids and surfactant capped nanoparticle-induced quasi-universal wetting behavior. J Phys Chem B 121(24):6081–6095

    CAS  Google Scholar 

  27. Harikrishnan AR, Dhar P, Gedupudi S, Das SK (2018) Governing influence of thermodynamic and chemical equilibria on the interfacial properties in complex fluids. J Phys Chem B 122(14):4141–4148

    CAS  Google Scholar 

  28. Harikrishnan AR, Dhar P, Agnihotri PK, Gedupudi S, Das SK (2018) Correlating contact line capillarity and dynamic contact angle hysteresis in surfactant-nanoparticle based complex fluids. Phys Fluids 30(4):042006

    Google Scholar 

  29. Harikrishnan AR, Dhar P, Gedupudi S, Das SK (2017) Effect of interaction of nanoparticles and surfactants on the spreading dynamics of sessile droplets. Langmuir 33(43):12180–12192

    CAS  Google Scholar 

  30. Zhang W, Zhu Y, Liu X, Wang D, Li J, Jiang L, Jin J (2014) Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew Chem Int Ed 53(3):856–860

    CAS  Google Scholar 

  31. Xu Z, Zhao Y, Wang H, Wang X, Lin T (2015) A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superoleophobic for oil-water separation. Angew Chem 127(15):4610–4613

    Google Scholar 

  32. Cheng Z, Wang J, Lai H, Ying D, Hou R, Li C, Zhang N, Sun K (2015) pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low-adhesive superoleophobic copper mesh film. Langmuir 31(4):1393–1399

    CAS  Google Scholar 

  33. Zhao L, Cheng J (2018) The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces. Nanoscale 10(14):6426–6436

    CAS  Google Scholar 

  34. Tian X, Verho T, Ras RH (2016) Moving superhydrophobic surfaces toward real-world applications. Science 352(6282):142–143

    CAS  Google Scholar 

  35. Chen S, Li X, Li Y, Sun J (2015) Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9(4):4070–4076

    CAS  Google Scholar 

  36. Sáenz PJ, Wray AW, Che Z, Matar OK, Valluri P, Kim J, Sefiane K (2017) Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation. Nat Commun 8:14783

    Google Scholar 

  37. Sáenz PJ, Sefiane K, Kim J, Matar OK, Valluri P (2015) Evaporation of sessile drops: a three-dimensional approach. J Fluid Mech 772:705–739

    Google Scholar 

  38. Al-Sharafi A, Yilbas BS, Sahin AZ, Ali H, Al-Qahtani H (2016) Heat transfer characteristics and internal fluidity of a sessile droplet on hydrophilic and hydrophobic surfaces. Appl Therm Eng 108:628–640

    Google Scholar 

  39. Adhikari S, Nabil M, Rattner AS (2017) Condensation heat transfer in a sessile droplet at varying Biot number and contact angle. Int J Heat Mass Transf 115:926–931

    Google Scholar 

  40. Larson RG (2014) Transport and deposition patterns in drying sessile droplets. AIChE J 60(5):1538–1571

    CAS  Google Scholar 

  41. Lequien F, Virginie Soulié G, Moine A, Lequien D, Feron P Prene, Moehwald H, Riegler H, Zemb T (2018) Corrosion influence on the evaporation of sessile droplet. Colloids Surf, A 546:59–66

    CAS  Google Scholar 

  42. Al-Sharafi A, Yilbas BS, Sahin AZ, Ali H (2017) Flow field inside a sessile droplet on a hydrophobic surface in relation to self-cleaning applications of dust particles. J Heat Transf 139(4):042003

    Google Scholar 

  43. Lu Y, Sathasivam S, Song J, Crick CR, Carmalt CJ, Parkin IP (2015) Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347(6226):1132–1135

    CAS  Google Scholar 

  44. Soulié V, Karpitschka S, Lequien F, Prené P, Zemb T, Moehwald H, Riegler H (2015) The evaporation behavior of sessile droplets from aqueous saline solutions. Phys Chem Chem Phys 17(34):22296–22303

    Google Scholar 

  45. Chen X, Weibel JA, Garimella SV (2015) Exploiting microscale roughness on hierarchical superhydrophobic copper surfaces for enhanced dropwise condensation. Adv Mater Interfaces 2(3):1400480

    Google Scholar 

  46. Azad MAK, Barthlott W, Koch K (2015) Hierarchical surface architecture of plants as an inspiration for biomimetic fog collectors. Langmuir 31(48):13172–13179

    CAS  Google Scholar 

  47. Czerwiec T, S Tsareva, A Andrieux, GA Bortolini, PH Bolzan, G Castanet, M Gradeck, G Marcos (2017) Thermal management of metallic surfaces: evaporation of sessile water droplets on polished and patterned stainless steel. In: IOP Conference Series: Materials Science and Engineering, vol 258, no. 1, p 012003. IOP Publishing

  48. Chakraborty S, Rosen MA, MacDonald BD (2017) Analysis and feasibility of an evaporative cooling system with diffusion-based sessile droplet evaporation for cooling microprocessors. Appl Therm Eng 125:104–110

    Google Scholar 

  49. Lanotte L, Laux D, Charlot B, Abkarian M (2017) Role of red cells and plasma composition on blood sessile droplet evaporation. Phys Rev E 96(5):053114

    Google Scholar 

  50. Chen R, Zhang L, Zang D, Shen W (2016) Blood drop patterns: formation and applications. Adv Coll Interface Sci 231:1–14

    CAS  Google Scholar 

  51. Joensson HN, Svahn HA (2012) Droplet microfluidics—a tool for single-cell analysis. Angew Chem Int Ed 51(49):12176–12192

    CAS  Google Scholar 

  52. Schneider T, Kreutz J, Chiu DT (2013) The potential impact of droplet microfluidics in biology. Anal Chem 85(7):3476–3482

    CAS  Google Scholar 

  53. Chokkalingam V, Tel J, Wimmers F, Liu X, Semenov S, Thiele J, Figdor CG, Huck WT (2013) Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab Chip 13(24):4740–4744

    CAS  Google Scholar 

  54. Srisa-Art M, Bonzani IC, Williams A, Stevens MM, Edel JB (2009) Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst 134(11):2239–2245

    CAS  Google Scholar 

  55. Rane TD, Zec HC, Puleo C, Lee AP, Wang T-H (2012) Droplet microfluidics for amplification-free genetic detection of single cells. Lab Chip 12(18):3341–3347

    CAS  Google Scholar 

  56. Shum HC, Abate AR, Lee D, Studart AR, Wang B, Chen C-H, Thiele J, Shah RK, Krummel A, Weitz DA (2010) Droplet microfluidics for fabrication of non-spherical particles. Macromol Rapid Commun 31(2):108–118

    CAS  Google Scholar 

  57. Cheow LF, Yobas L, Kwong D-L (2007) Digital microfluidics: droplet based logic gates. Appl Phys Lett 90(5):054107

    Google Scholar 

  58. Dangla R, Cagri Kayi S, Baroud CN (2013) Droplet microfluidics driven by gradients of confinement. Proc Natl Acad Sci 110(3):853–858

    CAS  Google Scholar 

  59. Sjostrom SL, Bai Y, Huang M, Liu Z, Nielsen J, Joensson HN, Svahn HA (2014) High-throughput screening for industrial enzyme production hosts by droplet microfluidics. Lab Chip 14(4):806–813

    CAS  Google Scholar 

  60. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220

    CAS  Google Scholar 

  61. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155

    CAS  Google Scholar 

  62. Baroud CN, de Saint Vincent MR, Delville J-P (2007) An optical toolbox for total control of droplet microfluidics. Lab Chip 7(8):1029–1033

    CAS  Google Scholar 

  63. Conrath M, Karcher C (2005) Shaping of sessile liquid metal drops using high-frequency magnetic fields. Eur J Mech-B/Fluids 24(2):149–165

    Google Scholar 

  64. Bratz A, Egry I (1995) Surface oscillations of electromagnetically levitated viscous metal droplets. J Fluid Mech 298:341–359

    Google Scholar 

  65. Shatrov V, Priede J, Gerbeth G (2003) Three-dimensional linear stability analysis of the flow in a liquid spherical droplet driven by an alternating magnetic field. Phys Fluids 15(3):668–678

    CAS  Google Scholar 

  66. Kim D, Lee J-B (2015) Magnetic-field-induced liquid metal droplet manipulation. J Korean Phys Soc 66(2):282–286

    CAS  Google Scholar 

  67. Gao D, Morley NB, Dhir V (2004) Understanding magnetic field gradient effect from a liquid metal droplet movement. J Fluids Eng 126(1):120–124

    Google Scholar 

  68. Haidar J, Lowke JJ (1996) Predictions of metal droplet formation in arc welding. J Phys D Appl Phys 29(12):2951

    CAS  Google Scholar 

  69. Smith TM, Winstead RE (1995) Electrodynamic pump for dispensing molten solder. U.S. Patent 5,377,961, issued 3 Jan 1995

  70. Nguyen N-T (2013) Deformation of ferrofluid marbles in the presence of a permanent magnet. Langmuir 29(45):13982–13989

    CAS  Google Scholar 

  71. Bormashenko E, Pogreb R, Bormashenko Y, Musin A, Stein T (2008) New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Langmuir 24(21):12119–12122

    CAS  Google Scholar 

  72. Nguyen N-T, Ng KM, Huang X (2006) Manipulation of ferrofluid droplets using planar coils. Appl Phys Lett 89(5):052509

    Google Scholar 

  73. Nguyen N-T, Beyzavi A, Ng KM, Huang X (2007) Kinematics and deformation of ferrofluid droplets under magnetic actuation. Microfluid Nanofluid 3(5):571–579

    Google Scholar 

  74. Beyzavi A, Nguyen N-T (2008) One-dimensional actuation of a ferrofluid droplet by planar microcoils. J Phys D Appl Phys 42(1):015004

    Google Scholar 

  75. Zhu G-P, Nguyen N-T, Ramanujan RV, Huang X-Y (2011) Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field. Langmuir 27(24):14834–14841

    CAS  Google Scholar 

  76. Chen C-Y, Cheng Z-Y (2008) An experimental study on Rosensweig instability of a ferrofluid droplet. Phys Fluids 20(5):054105

    Google Scholar 

  77. Falcucci G, Chiatti G, Succi S, Mohamad AA, Kuzmin A (2009) Rupture of a ferrofluid droplet in external magnetic fields using a single-component lattice Boltzmann model for nonideal fluids. Phys Rev E 79(5):056706

    CAS  Google Scholar 

  78. Nguyen N-T, Zhu G, Chua Y-C, Phan V-N, Tan S-H (2010) Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet. Langmuir 26(15):12553–12559

    CAS  Google Scholar 

  79. Havard N, Risso F, Tordjeman P (2013) Breakup of a pendant magnetic drop. Phys Rev E 88(1):013014

    CAS  Google Scholar 

  80. Fabian M, Burda P, Šviková M, Huňady R (2017) The influence of magnetic field on the separation of droplets from ferrofluid jet. J Magn Magn Mater 431:196–200

    CAS  Google Scholar 

  81. Potts HE, Diver DA (2001) Large-amplitude ferrofluid surface waves and jets. New J Phys 3(1):7

    Google Scholar 

  82. Afkhami S, Tyler AJ, Renardy Y, Renardy M, St Pierre TG, Woodward RC, Riffle JS (2010) Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J Fluid Mech 663:358–384

    CAS  Google Scholar 

  83. Afkhami S, Renardy Y, Renardy M, Riffle JS, St Pierre T (2008) Field-induced motion of ferrofluid droplets through immiscible viscous media. J Fluid Mech 610:363–380

    CAS  Google Scholar 

  84. Shi D, Bi Q, Zhou R (2014) Numerical simulation of a falling ferrofluid droplet in a uniform magnetic field by the VOSET method. Numer Heat Transf, Part A: Appl 66(2):144–164

    CAS  Google Scholar 

  85. Korlie MS, Mukherjee A, Nita BG, Stevens JG, David Trubatch A, Yecko P (2008) Modeling bubbles and droplets in magnetic fluids. J Phys: Condens Matter 20(20):204143

    Google Scholar 

  86. Shi D, Bi Q, He Y, Zhou R (2014) Experimental investigation on falling ferrofluid droplets in vertical magnetic fields. Exp Thermal Fluid Sci 54:313–320

    CAS  Google Scholar 

  87. Mefford OT, Woodward RC, Goff JD, Vadala TP, St Pierre TG, Dailey JP, Riffle JS (2007) Field-induced motion of ferrofluids through immiscible viscous media: testbed for restorative treatment of retinal detachment. J Magn Magn Mater 311(1):347–353

    CAS  Google Scholar 

  88. Voltairas PA, Fotiadis DI, Massalas CV (2001) Elastic stability of silicone ferrofluid internal tamponade (SFIT) in retinal detachment surgery. J Magn Magn Mater 225(1–2):248–255

    CAS  Google Scholar 

  89. La-Barcis S, Bacri JC, Ce-Barbers A, Perzynski R (1997) Frequency locking and devil’s staircase for a two-dimensional ferrofluid droplet in an elliptically polarized rotating magnetic field. Phys Rev E 55(3):2640

    Google Scholar 

  90. Chen C-Y, Yang Y-S, Miranda JA (2009) Miscible ferrofluid patterns in a radial magnetic field. Phys Rev E 80(1):016314

    Google Scholar 

  91. Lacis S (1999) Bending of ferrofluid droplet in rotating magnetic field. J Magn Magn Mater 201(1–3):335–338

    CAS  Google Scholar 

  92. Jackson DP, Miranda JA (2003) Controlling fingering instabilities in rotating ferrofluids. Phys Rev E 67(1):017301

    Google Scholar 

  93. Janiaud E, Elias F, Bacri JC, Cabuil V, Perzynski R (2000) Spinning ferrofluid microscopic droplets. Magnetohydrodynamics 36(4):301–314

    Google Scholar 

  94. Jamin T, Py C, Falcon E (2011) Instability of the origami of a ferrofluid drop in a magnetic field. Phys Rev Lett 107(20):204503

    Google Scholar 

  95. Lira SA, Miranda JA, Oliveira RM (2010) Stationary shapes of confined rotating magnetic liquid droplets. Phys Rev E 82(3):036318

    Google Scholar 

  96. Chen C-Y, Tsai W-K, Miranda JA (2008) Hybrid ferrohydrodynamic instability: coexisting peak and labyrinthine patterns. Phys Rev E 77(5):056306

    Google Scholar 

  97. Fattah AR, Abdel SG, Puri IK (2016) Printing microstructures in a polymer matrix using a ferrofluid droplet. J Magn Magn Mater 401:1054–1059

    Google Scholar 

  98. Ghaffari A, Hashemabadi SH, Bazmi M (2015) CFD simulation of equilibrium shape and coalescence of ferrofluid droplets subjected to uniform magnetic field. Colloids Surf, A 481:186–198

    CAS  Google Scholar 

  99. Ray A, Varma VB, Wang Z, Wang Z, Jayaneel PJ, Sudharsan NM, Ramanujan RV (2016) Magnetic droplet merging by hybrid magnetic fields. IEEE Magn Lett 7:1–5

    Google Scholar 

  100. Timonen JV, Latikka M, Leibler L, Ras RH, Ikkala O (2013) Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341(6143):253–257

    CAS  Google Scholar 

  101. Guo Z-G, Zhou F, Hao J-C, Liang Y-M, Liu W-M, Huck WTS (2006) “Stick and slide” ferrofluidic droplets on superhydrophobic surfaces. Appl Phy Lett 89(8):081911

    Google Scholar 

  102. Ray A, Varma VB, Jayaneel PJ, Sudharsan NM, Wang ZP, Ramanujan RV (2017) On demand manipulation of ferrofluid droplets by magnetic fields. Sens Actuators B: Chem 242:760–768

    CAS  Google Scholar 

  103. Banerjee S, Fasnacht M, Garoff S, Widom M (1999) Elongation of confined ferrofluid droplets under applied fields. Phys Rev E 60(4):4272

    CAS  Google Scholar 

  104. Jackson DP, Miranda JA (2007) Confined ferrofluid droplet in crossed magnetic fields. Eur Phys J E 23(4):389–396

    CAS  Google Scholar 

  105. Manukyan S, Schneider M (2016) Experimental investigation of wetting with magnetic fluids. Langmuir 32(20):5135–5140

    CAS  Google Scholar 

  106. Poesio P, Wang EN (2014) Resonance induced wetting state transition of a ferrofluid droplet on superhydrophobic surfaces. Exp Therm Fluid Sci 57:353–357

    CAS  Google Scholar 

  107. Rigoni C, Pierno M, Mistura G, Talbot D, Massart R, Bacri J-C, Abou-Hassan A (2016) Static magnetowetting of ferrofluid drops. Langmuir 32(30):7639–7646

    CAS  Google Scholar 

  108. Cristaldo CFC, Fachini FF (2013) Ferrofluid droplet heating and vaporization under very large magnetic power: a thermal boundary layer model. Phys Fluids 25(3):037101

    Google Scholar 

  109. Cristaldo Cesar FC, Fachini Fernando F (2013) Analysis of ferrofluid droplet combustion under very large magnetic power. Combust Flame 160(8):1458–1465

    CAS  Google Scholar 

  110. Brunet T, Zimny K, Mascaro B, Sandre O, Poncelet O, Aristégui C, Mondain-Monval O (2013) Tuning Mie scattering resonances in soft materials with magnetic fields. Phys Rev Lett 111(26):264301

    Google Scholar 

  111. Romankiw LT, Slusarczuk MMG, Thompson DA (1976) “Ferrofluid display device.” US Patent 3,972,595, issued 3 Aug 1976

  112. Tan S-H, Nguyen N-T, Yobas L, Kang TG (2010) Formation and manipulation of ferrofluid droplets at a microfluidic T-junction. J Micromech Microeng 20(4):045004

    Google Scholar 

  113. Liu J, Tan S-H, Yap YF, Ng MY, Nguyen N-T (2011) Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid Nanofluidics 11(2):177–187

    Google Scholar 

  114. Wu Y, Taotao F, Ma Y, Li HZ (2013) Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device. Soft Matter 9(41):9792–9798

    CAS  Google Scholar 

  115. Wu Y, Taotao F, Ma Y, Li HZ (2015) Active control of ferrofluid droplet breakup dynamics in a microfluidic T-junction. Microfluid Nanofluid 18(1):19–27

    Google Scholar 

  116. Yan Q, Xuan S, Ruan X, Jie W, Gong X (2015) Magnetically controllable generation of ferrofluid droplets. Microfluid Nanofluid 19(6):1377–1384

    Google Scholar 

  117. Varma VB, Ray A, Wang Z, Wang Z, Wu R, Jayaneel PJ, Sudharsan NM, Ramanujan RV (2016) Control of ferrofluid droplets in microchannels by uniform magnetic fields. IEEE Magn Lett 7:1–5

    Google Scholar 

  118. Li H, Yining W, Wang X, Zhu C, Taotao F, Ma Y (2016) Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction. Rsc Adv 6(1):778–785

    CAS  Google Scholar 

  119. Kadivar E (2014) Magnetocoalescence of ferrofluid droplets in a flat microfluidic channel. EPL (Europhys Lett) 106(2):24003

    Google Scholar 

  120. Tan SH, Nguyen N-T (2011) Generation and manipulation of monodispersed ferrofluid emulsions: the effect of a uniform magnetic field in flow-focusing and T-junction configurations. Phys Rev E 84(3):036317

    Google Scholar 

  121. Katsikis G, Cybulski JS, Prakash M (2015) Synchronous universal droplet logic and control. Nat Phys 11(7):588

    CAS  Google Scholar 

  122. Seo HW, Chae JB, Hong SJ, Rhee K, Chang J, Chung SK (2015) Electromagnetically driven liquid iris. Sens Actuators A: Phys 231:52–58

    CAS  Google Scholar 

  123. Grimm RL, Beauchamp JL (2005) Dynamics of field-induced droplet ionization: time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields. J Phys Chem B 109(16):8244–8250

    CAS  Google Scholar 

  124. Reznik SN, Yarin AL, Zussman E, Bercovici L (2006) Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field. Phys Fluids 18(6):062101

    Google Scholar 

  125. Hase M, Watanabe SN, Yoshikawa K (2006) Rhythmic motion of a droplet under a dc electric field. Phys Rev E 74(4):046301

    Google Scholar 

  126. Supeene G, Koch CR, Bhattacharjee S (2008) Deformation of a droplet in an electric field: nonlinear transient response in perfect and leaky dielectric media. J Colloid Interface Sci 318(2):463–476

    CAS  Google Scholar 

  127. Celestini F, Kirstetter G (2012) Effect of an electric field on a Leidenfrost droplet. Soft Matter 8(22):5992–5995

    CAS  Google Scholar 

  128. Gunji M, Washizu M (2005) Self-propulsion of a water droplet in an electric field. J Phys D Appl Phys 38(14):2417

    CAS  Google Scholar 

  129. Warshavsky VB, Shchekin AK (1999) The effects of external electric field in thermodynamics of formation of dielectric droplet. Colloids Surf, A 148(3):283–290

    CAS  Google Scholar 

  130. Takeda Koji, Nakajima Akira, Hashimoto Kazuhito, Watanabe Toshiya (2002) “Jump of water droplet from a super-hydrophobic film by vertical electric field. Surf Sci 519(1–2):L589–L592

    CAS  Google Scholar 

  131. Nazemi MH, Hinrichsen V (2013) Experimental investigations on water droplet oscillation and partial discharge inception voltage on polymeric insulating surfaces under the influence of AC electric field stress. IEEE Trans Dielectr Electr Insul 20(2):443–453

    Google Scholar 

  132. Plumlee HR, Semonin RG (1965) Cloud droplet collision efficiency in electric fields. Tellus 17(3):356–364

    Google Scholar 

  133. O’Konski CT, Thacher HC Jr (1953) The distortion of aerosol droplets by an electric field. J Phys Chem 57(9):955–958

    Google Scholar 

  134. Quate CF (1996) “Method and apparatus for ejecting a droplet using an electric field.” US Patent 5,541,627, issued 30 July 1996

  135. Kitzerow H-S, Crooker PP (1993) Electric field effects on the droplet structure in polymer dispersed cholesteric liquid crystals. Liq Cryst 13(1):31–43

    CAS  Google Scholar 

  136. Ambrožič M, Formoso P, Golemme A, Žumer S (1997) Anchoring and droplet deformation in polymer dispersed liquid crystals: NMR study in an electric field. Phys Rev E 56(2):1825

    Google Scholar 

  137. Bentenitis N, Krause S (2005) Droplet deformation in dc electric fields: the extended leaky dielectric model. Langmuir 21(14):6194–6209

    CAS  Google Scholar 

  138. Benselama AM, Achard J-L, Pham P (2006) Numerical simulation of an uncharged droplet in a uniform electric field. J Electrostat 64(7–9):562–568

    Google Scholar 

  139. Ha J-W, Yang S-M (1999) Fluid dynamics of a double emulsion droplet in an electric field. Phys Fluids 11(5):1029–1041

    CAS  Google Scholar 

  140. Song FH, Li BQ, Liu C (2013) Molecular dynamics simulation of nanosized water droplet spreading in an electric field. Langmuir 29(13):4266–4274

    CAS  Google Scholar 

  141. Yamada T, Sugimoto T, Higashiyama Y, Takeishi M, Aoki T (2003) Resonance phenomena of a single water droplet located on a hydrophobic sheet under ac electric field. IEEE Trans Ind Appl 39(1):59–65

    Google Scholar 

  142. Zhang J, Zahn JD, Lin H (2013) Transient solution for droplet deformation under electric fields. Phys Rev E 87(4):043008

    Google Scholar 

  143. Oliver DLR, De Witt KJ (1993) High Peclet number heat transfer from a droplet suspended in an electric field: interior problem. Int J Heat Mass Transf 36(12):3153–3155

    CAS  Google Scholar 

  144. Birbarah P, Li Z, Pauls A, Miljkovic N (2015) A comprehensive model of electric-field-enhanced jumping-droplet condensation on superhydrophobic surfaces. Langmuir 31(28):7885–7896

    CAS  Google Scholar 

  145. Hager DB, Dovichi NJ (1994) Behavior of microscopic liquid droplets near a strong electrostatic field: droplet electrospray. Anal Chem 66(9):1593–1594

    CAS  Google Scholar 

  146. Hayati I, Bailey AI, Tadros TF (1987) Investigations into the mechanisms of electrohydrodynamic spraying of liquids: I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. J Colloid Interface Sci 117(1):205–221

    CAS  Google Scholar 

  147. Grace JM, Dunn PF (1996) Droplet motion in an electrohydrodynamic fine spray. Exp Fluids 20(3):153–164

    CAS  Google Scholar 

  148. Cheng C-C, Chang CA, Yeh JA (2006) Variable focus dielectric liquid droplet lens. Opt Express 14(9):4101–4106

    Google Scholar 

  149. Drzaic PS, Muller A (1989) Droplet shape and reorientation fields in nematic droplet/polymer films. Liq Cryst 5(5):1467–1475

    CAS  Google Scholar 

  150. Forbes TP, Degertekin FL, Fedorov AG (2011) Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field. Phys Fluids 23(1):012104

    Google Scholar 

  151. Law SE (1989) Charge and mass flux in the radial electric field of an evaporating charged water droplet: an experimental analysis. IEEE Trans Ind Appl 25(6):1081–1087

    CAS  Google Scholar 

  152. Yen T-H (2012) Investigation of the effects of perpendicular electric field and surface morphology on nanoscale droplet using molecular dynamics simulation. Mol Simul 38(6):509–517

    CAS  Google Scholar 

  153. Heng L, Guo T, Wang B, Fan L-Z, Jiang L (2015) In situ electric-driven reversible switching of water-droplet adhesion on a superhydrophobic surface. J Mater Chem A 3(47):23699–23706

    CAS  Google Scholar 

  154. Gouz HN, Sadhal SS (1989) Fluid dynamics and stability analysis of a compound droplet in an electric field. Q J Mech Appl Math 42(1):65–83

    Google Scholar 

  155. He H, Salipante PF, Vlahovska PM (2013) Electrorotation of a viscous droplet in a uniform direct current electric field. Phys Fluids 25(3):032106

    Google Scholar 

  156. Adamiak K, Floryan JM (2011) Dynamics of water droplet distortion and breakup in a uniform electric field. IEEE Trans Ind Appl 47(6):2374–2383

    Google Scholar 

  157. Mahmoudi SR, Adamiak K, Castle GSP (2011) Spreading of a dielectric droplet through an interfacial electric pressure. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. The Royal Society, 2011, p rspa20110220

  158. Arzpeyma A, Bhaseen S, Dolatabadi A, Wood-Adams P (2008) A coupled electro-hydrodynamic numerical modeling of droplet actuation by electrowetting. Colloids Surf, A 323(1–3):28–35

    CAS  Google Scholar 

  159. Imamura O, Chen B, Nishida S, Yamashita K, Tsue M, Kono M (2011) Combustion of ethanol fuel droplet in vertical direct current electric field. Proc Combust Inst 33(2):2005–2011

    CAS  Google Scholar 

  160. Borra J-P, Ehouarn P, Boulaud D (2004) Electrohydrodynamic atomisation of water stabilised by glow discharge—operating range and droplet properties. J Aerosol Sci 35(11):1313–1332

    CAS  Google Scholar 

  161. Shchekin AK, Kshevetskiy MS, Warshavsky VB (2002) The macroscopic effects of internal and external electric fields on profile and thermodynamics of a dielectric droplet. Aerosol Sci Technol 36(3):318–328

    CAS  Google Scholar 

  162. Sumiyoshitani S (1994) Effects of an applied electric field on collection efficiency by a charged droplet for dust particles in charged droplet scrubbers. Aerosol Sci Technol 20(1):71–82

    CAS  Google Scholar 

  163. Zakinyan A, Tkacheva E, Dikansky Y (2012) Dynamics of a dielectric droplet suspended in a magnetic fluid in electric and magnetic fields. J Electrost 70(2):225–232

    CAS  Google Scholar 

  164. Wang Z, Wang F-C, Zhao Y-P (2012) Tap dance of a water droplet. Proc R Soc A 468(2145):2485–2495

    Google Scholar 

  165. Reznik SN, Yarin AL, Theron A, Zussman E (2004) Transient and steady shapes of droplets attached to a surface in a strong electric field. J Fluid Mech 516:349–377

    Google Scholar 

  166. Mohseni K, Arzpeyma A, Dolatabadi A (2006) Behaviour of a moving droplet under electrowetting actuation: numerical simulation. Can J Chem Eng 84(1):17–21

    Google Scholar 

  167. Zhu Y, Haji K, Otsubo M, Honda C, Hayashi N (2006) Electrohydrodynamic behaviour of water droplet on an electrically stressed hydrophobic surface. J Phys D Appl Phys 39(9):1970

    CAS  Google Scholar 

  168. Chiou PY, Park S-Y, Wu MC (2008) Continuous optoelectrowetting for picoliter droplet manipulation. Appl Phys Lett 93(22):221110

    Google Scholar 

  169. Newbery AP, Grant PS (2003) Large arc voltage fluctuations and droplet formation in electric arc wire spraying. Powder Metall 46(3):229–235

    CAS  Google Scholar 

  170. Bateni A, Amirfazli A, Neumann AW (2006) Effects of an electric field on the surface tension of conducting drops. Colloids Surf, A 289(1–3):25–38

    CAS  Google Scholar 

  171. Bateni A, Laughton S, Tavana H, Susnar SS, Amirfazli A, Neumann AW (2005) Effect of electric fields on contact angle and surface tension of drops. J Colloid Interface Sci 283(1):215–222

    CAS  Google Scholar 

  172. Tsakonas C, Corson LT, Sage IC, Brown CV (2014) Electric field induced deformation of hemispherical sessile droplets of ionic liquid. J Electrostat 72(6):437–440

    Google Scholar 

  173. Bormashenko E, Whyman G (2008) Variational approach to wetting problems: calculation of a shape of sessile liquid drop deposited on a solid substrate in external field. Chem Phys Lett 463(1–3):103–105

    CAS  Google Scholar 

  174. Bateni A, Susnar SS, Amirfazli A, Neumann AW (2004) Development of a new methodology to study drop shape and surface tension in electric fields. Langmuir 20(18):7589–7597

    CAS  Google Scholar 

  175. Mugele F, Buehrle J (2007) Equilibrium drop surface profiles in electric fields. J Phys: Condens Matter 19(37):375112

    Google Scholar 

  176. Wohlhuter FK, Basaran OA (1992) Shapes and stability of pendant and sessile dielectric drops in an electric field. J Fluid Mech 235:481–510

    CAS  Google Scholar 

  177. Basaran OA, Scriven LE (1990) Axisymmetric shapes and stability of pendant and sessile drops in an electric field. J Colloid Interface Sci 140(1):10–30

    CAS  Google Scholar 

  178. Bateni A, Ababneh A, Elliott JAW, Neumann AW, Amirfazli A (2005) Effect of gravity and electric field on shape and surface tension of drops. Adv Space Res 36(1):64–69

    CAS  Google Scholar 

  179. Chakraborty Debapriya, Sudha Gogineni Sai, Chakraborty Suman, DasGupta Sunando (2011) Effect of submicron particles on electrowetting on dielectrics (EWOD) of sessile droplets. J Colloid Interface Sci 363(2):640–645

    CAS  Google Scholar 

  180. Imano AM, Beroual A (2006) Deformation of water droplets on solid surface in electric field. J Colloid Interface Sci 298(2):869–879

    Google Scholar 

  181. Sen P, Kim C-JCJ (2009) Capillary spreading dynamics of electrowetted sessile droplets in air. Langmuir 25(8):4302–4305

    CAS  Google Scholar 

  182. Ghazian O, Adamiak K, Castle GSP, Higashiyama Y (2014) Oscillation, pseudo-rotation and coalescence of sessile droplets in a rotating electric field. Colloids Surf A: Physicochem Eng Asp 441:346–353

    CAS  Google Scholar 

  183. Stone HA, Lister JR, Brenner MP (1999) Drops with conical ends in electric and magnetic fields. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, vol 455, no. 1981. The Royal Society, 1999, pp 329–347

  184. Notz PK, Basaran OA (1999) Dynamics of drop formation in an electric field. J Colloid Interface Sci 213(1):218–237

    CAS  Google Scholar 

  185. Kim H, Yang J, Chung J (2014) Resonant oscillation phenomena of a sessile droplet on electrohydrodynamic jetting nozzle. Jpn J Appl Phys 53(5S3):05HC03

    Google Scholar 

  186. Ha J-W, Yang S-M (2000) Deformation and breakup of Newtonian and non-Newtonian conducting drops in an electric field. J Fluid Mech 405:131–156

    CAS  Google Scholar 

  187. Hong J, Kim YK, Kang KH, Kim J, Lee SJ (2014) Spreading dynamics and oil film entrapment of sessile drops submerged in oil driven by DC electrowetting. Sens Actuators B: Chem 196:292–297

    CAS  Google Scholar 

  188. Feng J-T, Zhao Y-P (2008) Experimental observation of electrical instability of droplets on dielectric layer. J Phys D Appl Phys 41(5):052004

    Google Scholar 

  189. Lee J, Park JK, Hong J, Lee SJ, Kang KH, Hwang HJ (2014) Nonlinear oscillations of a sessile drop on a hydrophobic surface induced by ac electrowetting. Phys Rev E 90(3):033017

    Google Scholar 

  190. Corson LT, Tsakonas C, Duffy BR, Mottram NJ, Sage IC, Brown CV, Wilson SK (2014) Deformation of a nearly hemispherical conducting drop due to an electric field: theory and experiment. Phys Fluids 26(12):122106

    Google Scholar 

  191. Basaran OA, Scriven LE (1989) Axisymmetric shapes and stability of charged drops in an external electric field. Phys Fluids A 1(5):799–809

    CAS  Google Scholar 

  192. Baret J-C, Mugele F (2006) Electrical discharge in capillary breakup: controlling the charge of a droplet. Phys Rev Lett 96(1):016106

    Google Scholar 

  193. Ndoumbe J, Beroual A, Imano AM (2012) Behavior of water droplets on insulator surfaces submitted to DC voltage-coalescence. In: Annual report conference on electrical insulation and dielectric phenomena (CEIDP), IEEE, 2012, pp 725–728

  194. Fan S-K, Yang H, Wang T-T, Hsu W (2007) Asymmetric electrowetting—moving droplets by a square wave. Lab Chip 7(10):1330–1335

    CAS  Google Scholar 

  195. Gibbons MJ, Howe CM, Di Marco P, Robinson AJ (2016) Local heat transfer to an evaporating sessile droplet in an electric field. J Phys Conf Ser 745(3):032066 (IOP Publishing)

    Google Scholar 

  196. Cho SK, Moon H, Kim C-J (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromechanical Syst 12(1):70–80

    Google Scholar 

  197. Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45(16):2556–2560

    CAS  Google Scholar 

  198. Guo F, Ji X-H, Liu K, He R-X, Zhao L-B, Guo Z-X, Liu W, Guo S-S, Zhao X-Z (2010) Droplet electric separator microfluidic device for cell sorting. Appl Phys Lett 96(19):193701

    Google Scholar 

  199. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77(11):1725–1726

    CAS  Google Scholar 

  200. Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2):96–101

    CAS  Google Scholar 

  201. Kim H, Luo D, Link D, Weitz DA, Marquez M, Cheng Z (2007) Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Appl Phys Lett 91(13):133106

    Google Scholar 

  202. Kim H, Luo D, Link D, Weitz DA, Marquez M, Cheng Z (2007) Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Appl Phys Lett 91(13):133106

    Google Scholar 

  203. Kim C-J, Gong J (2016) Method and apparatus for real-time feedback control of electrical manipulation of droplets on chip. US Patent 9,266,076, issued 23 Feb 2016

  204. Shah GJ, Ohta AT, Chiou EP-Y, Wu MC (2009) EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip 9(12):1732–1739

    CAS  Google Scholar 

  205. Wheeler AR (2008) Putting electrowetting to work. Science 322(5901):539–540

    CAS  Google Scholar 

  206. Zagnoni M, Le Lain G, Cooper JM (2010) Electrocoalescence mechanisms of microdroplets using localized electric fields in microfluidic channels. Langmuir 26(18):14443–14449

    CAS  Google Scholar 

  207. Fan S-K, Hsieh T-H, Lin D-Y (2009) General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting. Lab Chip 9(9):1236–1242

    CAS  Google Scholar 

  208. Chabert M, Dorfman KD, Viovy J-L (2005) Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis 26(19):3706–3715

    CAS  Google Scholar 

  209. Zeng J, Korsmeyer T (2004) Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 4(4):265–277

    CAS  Google Scholar 

  210. Zagnoni M, Cooper JM (2009) On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size. Lab Chip 9(18):2652–2658

    CAS  Google Scholar 

  211. Bjørklund E (2009) The level-set method applied to droplet dynamics in the presence of an electric field. Comput Fluids 38(2):358–369

    Google Scholar 

  212. Scott TC (1987) Surface area generation and droplet size control using pulsed electric fields. AIChE J 33(9):1557–1559

    CAS  Google Scholar 

  213. Scott TC, Sisson WG (1988) Droplet size characteristics and energy input requirements of emulsions formed using high-intensity-pulsed electric fields. Sep Sci Technol 23(12–13):1541–1550

    CAS  Google Scholar 

  214. He M, Kuo JS, Chiu DT (2005) Electro-generation of single femtoliter-and picoliter-volume aqueous droplets in microfluidic systems. Appl Phys Lett 87(3):031916

    Google Scholar 

  215. Ahn B, Lee K, Panchapakesan R, Kwang W (2011) On-demand electrostatic droplet charging and sorting. Biomicrofluidics 5(2):024113

    Google Scholar 

  216. Wang W, Yang C, Li CM (2009) On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab Chip 9(11):1504–1506

    CAS  Google Scholar 

  217. Niu X, Zhang M, Peng S, Wen W, Sheng P (2007) Real-time detection, control, and sorting of microfluidic droplets. Biomicrofluidics 1(4):044101

    Google Scholar 

  218. Im DJ, Noh J, Yi NW, Park J, Kang IS (2011) Influences of electric field on living cells in a charged water-in-oil droplet under electrophoretic actuation. Biomicrofluidics 5(4):044112

    Google Scholar 

  219. Lee C-P, Chang H-C, Wei Z-H (2012) Charged droplet transportation under direct current electric fields as a cell carrier. Appl Phys Lett 101(1):014103

    Google Scholar 

  220. Fan S-K, Huang P-W, Wang T-T, Peng Y-H (2008) Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab Chip 8(8):1325–1331

    CAS  Google Scholar 

  221. Ahn B, Lee K, Louge R, Kwang W (2009) Concurrent droplet charging and sorting by electrostatic actuation. Biomicrofluidics 3(4):044102

    Google Scholar 

  222. Thiam AR, Bremond N, Bibette J (2009) Breaking of an emulsion under an ac electric field. Phys Rev Lett 102(18):188304

    Google Scholar 

  223. Edwards ME, Wu XL, Wu J-S, Huang JS, Kellay H (1998) Electric-field effects on a droplet microemulsion. Phys Rev E 57(1):797

    CAS  Google Scholar 

  224. Poncelet D, Neufeld R, Bugarski B, Amsden BG, Zhu J, Goosen MFA (1994) A parallel plate electrostatic droplet generator: parameters affecting microbead size. Appl Microbiol Biotechnol 42(2–3):251–255

    CAS  Google Scholar 

  225. Bugarski B, Li Q, Goosen MFA, Poncelet D, Neufeld RJ, Vunjak G (1994) Electrostatic droplet generation: mechanism of polymer droplet formation. AIChE J 40(6):1026–1031

    Google Scholar 

  226. Jung Y-M, Oh H-C, Kang S (2008) Electrical charging of a conducting water droplet in a dielectric fluid on the electrode surface. J Colloid Interface Sci 322(2):617–623

    CAS  Google Scholar 

  227. Jayasinghe SN, Qureshi AN, Eagles PAM (2006) Electrohydrodynamic jet processing: an advanced electric field driven jetting phenomenon for processing living cells. Small 2(2):216–219

    CAS  Google Scholar 

  228. Wang W, Yang C, Liu YS, Li CM (2010) On-demand droplet release for droplet-based microfluidic system. Lab Chip 10(5):559–562

    Google Scholar 

  229. Tan W-H, Takeuchi S (2006) Timing controllable electrofusion device for aqueous droplet-based microreactors. Lab Chip 6(6):757–763

    CAS  Google Scholar 

  230. Aghdaei S, Sandison ME, Zagnoni M, Green NG, Morgan H (2008) Formation of artificial lipid bilayers using droplet dielectrophoresis. Lab Chip 8(10):1617–1620

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purbarun Dhar.

Additional information

This article belongs to the Special issue—Transport processes in droplets: Fundamentals to Applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhar, P. Thermofluidic Transport in Droplets under Electromagnetic Stimulus: A Comprehensive Review. J Indian Inst Sci 99, 105–119 (2019). https://doi.org/10.1007/s41745-018-0088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-018-0088-y

Keywords

Navigation