Skip to main content

Advertisement

Log in

Recent Advances in Alloy Development for Metal Additive Manufacturing in Gas Turbine/Aerospace Applications: A Review

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

A dozen or so alloys have been occupying the alloy landscape in metal additive manufacturing (MAM) in terms of addressing all aspects of research, aiding the maturity of development of these alloys towards various qualified applications for the aerospace/gas turbine sector, in the last decade or so. These include, AlSi10Mg, Al7Si0.5 Mg (F357), AlMgSc, Ti6Al4V, γ-TiAl, CoCrMo, Stellite12, IN718, IN625, CM247LC, HastelloyX, SS316L, CuCrNb, CuCrZr, to name a few. There has been a tremendous interest in the design and development of novel high temperature materials for MAM, with isotropic microstructure and high defect tolerance, to facilitate accelerated adoption of this technology to the aerospace sector. These include developing difficult to weld chemistries, alloys prone to cracking, alloys with improved high temperature properties, composite materials and creating novel alloys that are otherwise not achievable via conventional manufacturing. This article comprises a review of some of the innovations in alloy development that have been explored in recent times, comprising Aluminum, Titanium, Nickel, Cobalt, Copper, and others, with relevance to the gas turbine/aerospace arena. This includes over 100 different alloys that have been studied via laser powder bed fusion, direct energy deposition, binder jet technology, along with some novel methods of manufacturing new materials via MAM, to give a flavour for the importance that this subject has garnished in the scientific community in recent times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:

copyright 2018 by The Minerals, Metals and Materials Society and ASM International. Used with permission}.

Figure 13:
Figure 14:

Similar content being viewed by others

References

  1. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies, rapid prototyping to direct digital manufacturing. Springer, Berlin

    Google Scholar 

  2. Dutta B, Babu S, Jared B (2019) Science Technology and Applications of metals in additive manufacturing. Elsevier, Amsterdam

    Google Scholar 

  3. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392

    Article  CAS  Google Scholar 

  4. Milner BB, Gradl P, Snedden G, Brooks M, Pitot J, Lopez E, Leary M, Berto F, Plessis A (2021) Metal additive manufacturing in aerospace: a review. Mater Design 209:110008

    Article  CAS  Google Scholar 

  5. Chua CK, Leong KF (2015) 3D printing and additive manufacturing: principles and applications. World Scientific Publishing Community, Singapore

    Google Scholar 

  6. Li X (2018) Additive manufacturing of advanced multi-component alloys: bulk metallic glasses and high entropy alloys. Adv Eng Mater 20(5):1700874

    Article  CAS  Google Scholar 

  7. Haleem A, Javaid M, Singh RP, Suman R (2021) Significant roles of 4D printing using smart materials in the field of manufacturing. Adv Ind Eng Polym Res 4:301–311

    Google Scholar 

  8. McKenzie J, Parupelli S, Martin D, Desai S (2017) Additive manufacturing of multiphase materials for electronics. In: IIE Ann. Conf. Proc, pp1133–1138

  9. Humbeeck JV (2018) Additive manufacturing of shape memory alloys. Shape Memory Superelasticity 4:309–312

    Article  Google Scholar 

  10. Elahinia M, Moghaddam NS, Andani MT, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630–663

    Article  CAS  Google Scholar 

  11. Wang X, Kustov S, Humbeeck JV (2018) A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting. Materials 11(9):1683

    Article  CAS  Google Scholar 

  12. Lee JY, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133

    Article  Google Scholar 

  13. Kruth J-P, Leu M, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. CIRP Ann-Manuf Technol 47(2):525–540

    Article  Google Scholar 

  14. Altıparmak SC, Yardley VA, Shi Z, Lin J (2021) Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing. Int J Lightweight Mater Manuf 4:246–261

    Google Scholar 

  15. Standard Terminology for Additive Manufacturing Technologies, ASTM F2792-12. https://www.astm.org/f2792-12.html. Accessed 1 Dec 2021

  16. Demyanetz AK, Popov Jr. VV, Kovalevsky A, Safranchik D, Koptyug A (2019) Powder-bed additive manufacturing for aerospace application: Techniques, metallic and metal/ceramic composite materials and trends. Manuf Revolut. 6, Article 5

  17. Li H, Huang Y, Jiang S, Lub Y, Gao X, Lub X, Ning Z, Sun J (2021) Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy. Mater Design 197:109262

    Article  CAS  Google Scholar 

  18. DM3D. https://www.dm3dtech.com/. Accessed 1 Dec 2021

  19. Li M, Du W, Elwany A, Pei Z, Ma C (2020) Metal binder jetting additive manufacturing: a literature review. J Manuf Sci Eng 142(9):090801 ((1–17))

    Article  Google Scholar 

  20. Meteyer S, Xu X, Perry N, Zhao YF (2014) Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia CIRP 15:19–25

    Article  Google Scholar 

  21. Cold spray Spee3D. https://www.spee3d.com/cold-spray-meets-metal-additive-manufacturing-thefabricator-com/. Accessed 1 Dec 2021

  22. Boeing Al alloys. http://www.dierk-raabe.com/aluminium-alloys-for-aerospace-applications/. Accessed 1 Dec 2021

  23. HiETA Brochure. https://www.hieta.biz/wp-content/uploads/2018/09/HiETA-Brochure.pdf. Accessed 1 Dec 2021

  24. Additive Manufacturing for the new A350 XWB. https://www.eos.info/01_parts-and-applications/case_studies_applications_parts/_case_studies_pdf/en_cases/cs_m_aerospace_sogeti_en.pdf. Accessed 1 Dec 2021

  25. Manufacture of a small demonstrator aero-engine entirely through additive manufacturing (Aero-engine). https://sief.org.au/wp-content/uploads/2019/02/RP0453AeroFinalReportSummary.pdf. Accessed 1 Dec 2021

  26. GE9X Engine Additive Parts. https://www.ge.com/additive/sites/default/files/2020-08/GE9X%20Additive%20parts.pdf. Accessed 1 Dec 2021

  27. Autodesk, Bionic Partition Project, 2016. https://www.archdaily.com/780661/the-livings-parametric-3d-printed-airplane-partition-is-designedto-mimic-bone-structure. Accessed 1 Dec 2021

  28. GE Addworks. https://www.ge.com/additive/sites/default/files/2020-06/GE_Addworks_Brochure_US_EN_Digital.pdf. Accessed 1 Dec 2021

  29. Additive manufacturing enables “bionic” aircraft designs, A320 cabin bracket. https://www.makepartsfast.com/additive-manufacturing-enables-bionic-aircraft-designs/. Accessed 1 Dec 2021

  30. Pratt & Whitney compressor stator blades. https://optics.org/news/6/4/7. Accessed 1 Dec 2021

  31. Cost-Efficient 3D Printing-Based Manufacturing for Aviation Reduce Fuel Consumption and Material Costs, Lower CO2 Emissions. https://www.eos.info/en/3d-printing-examples-applications/aerospace-3d-printing/airbus-case-study. Accessed 1 Dec 2021

  32. GKN Aerospace: The development of Additive Manufacturing at a global Tier 1 aerospace supplier, 2016. https://www.metal-am.com/articles/gkn-aerospace-3d-printing-at-a-tier-1-aerospace-supplier/. Accessed 1 Dec 2021

  33. GKN Aerospace engine systems journey to introduce additive manufacturing, 2017. https://www.gknaerospace.com/en/our-technology/2017/gkn-aerospace-engine-systems-journey-to-introduce-additive-manufacturing/. Accessed 1 Dec 2021

  34. Siemens high pressure hydraulic manifold. https://www.nrc.gov/docs/ML2033/ML20339A650.pdf. Accessed 1 Dec 2021

  35. Airbus, Ti alloy Reflector Bracket. https://www.eos.info/en/3d-printing-examples-applications/all-3d-printing-applications/airbus-space-satellite-titanium-brackets. Accessed 1 Dec 2021

  36. Airbus, A350 XWB Pylon Bracket. https://www.airbus.com/en/newsroom/press-releases/2017-09-first-titanium-3d-printed-part-installed-into-serial-production. Accessed 1 Dec 2021

  37. L.-A. Airbus, Landing Gear Sensor Bracket. https://amfg.ai/2020/01/23/applications-spotlight-3d-printed-brackets/. Accessed 1 Dec 2021

  38. F. 3D Systems, GE Aircraft Bracket. https://www.3dsystems.com/learning-center/case-studies/topology-optimization-and-dmp-combine-meet-ge-aircraft-engine-bracket. Accessed 1 Dec 2021

  39. Oerlikon and Boeing to Collaborate in Additive Manufacturing Work.https://boeing.mediaroom.com/2018-02-20-Oerlikon-and-Boeing-to-Collaborate-in-Additive-Manufacturing-Work. Accessed 1 Dec 2021

  40. Fraunhofer IWS, Annual report 2019/2020 Fraunhofer IWS, 2020. https://www.iws.fraunhofer.de/en/newsandmedia/mediacenter/annual_reports.html. Accessed 1 Dec 2021

  41. Rolls Royce Titanium structure. https://www.tctmagazine.com/additive-manufacturing-3d-printing-news/rolls-royce-set-to-fly-worlds-largest-3d-printed-aerospace-part/. Accessed 1 Dec 2021

  42. GKN Aerospace Wins Ariane Group Contract for Ground-breaking Additively Manufactured Rocket Engine Turbines, 2018. https://www.gknaerospace.com/en/newsroom/news-releases/2018/gkn-aerospace-wins-contract-from-arianegroup-for-ground-breaking-additively-manufactured-rocket-engine-turbines/. Accessed 1 Dec 2021

  43. NASA new alloys in MAM. https://3dprint.com/278670/nasa-advances-new-alloys-and-scale-of-metal-additive-manufacturing/. Accessed 1 Dec 2021

  44. Combustion liner IN718. https://www.protolabs.com/resources/blog/inconel-718-a-workhorse-material-for-additive-manufacturing/. Accessed 1 Dec 2021

  45. S. Cellcore, Rocket Engine. https://www.etmm-online.com/3d-printing-arocket-engine-a-886960/. Accessed 1 Dec 2021

  46. DLR and 3D systems, Liquid Rocket Engine Injector. https://www.3dsystems.com/customer-stories/german-aerospace-center-dlr-designs-liquid-rocket-engine-injector-3d-systems. Accessed 1 Dec 2021

  47. Future Ariane Propulsion Module: Simplified by Additive Manufacturing https://www.eos.info/01_parts-and-applications/case_studies_applications_parts/_case_studies_pdf/en_cases/cs_m_aerospace_arianegroup_en.pdf. Accessed 1 Dec 2021

  48. Copenhagen suborbitals, coaxial axis swiler. https://www.3dprintingmedia.network/copenhagen-suborbitals-3d-prints-coaxial-swirl-injector-by-metal-binder-jetting/. Accessed 1 Dec 2021

  49. IN625 Injector by NASA. https://ntrs.nasa.gov/citations/20140016692. Accessed 1 Dec 2021

  50. Intech additive solutions CM247LC Nozzle guide vane. https://www.amchronicle.com/india/intech-and-hal-develop-3d-printed-aero-engine-part-using-superalloy-cm-247lc/. Accessed 1 Dec 2021

  51. Aerojet Rocketdyne, AR1 Preburner. https://3dprintingindustry.com/news/aerojet-rocketdyne-successfully-tests-3d-printed-ar1-engine-bid-replace-current-rd-180-112732/. Accessed 1 Dec 2021

  52. New manufacturing milestone: 30,000 additive fuel nozzles. https://www.ge.com/additive/stories/new-manufacturing-milestone-30000-additive-fuel-nozzles. Accessed 1 Dec 2021

  53. GE Sump cover CoCr in F110 https://www.3dprintingmedia.network/us-airforce-ge-3d-printed-sump-cover-f110/. Accessed 1 Dec 2021

  54. Optomec, LENS Component Repair Solution stellite21 blisk repair, 2016. https://optomec.com/wp-content/uploads/2014/04/Optomec_LENS_Blisk_Repair_Datasheet.pdf. Accessed 1 Dec 2021

  55. Aerojet Rocketdyne, Thrust Chamber. https://www.i3dmfg.com/aerojet-rocketdyne-tests-3d-printed-thrust-chamber-success/. Accessed 1 Dec 2021

  56. Header Hot Stuff: To Build More Affordable Rocket Engines, NASA Researchers Are Using the Latest 3D Printers—And 1 Ancient Metal, Scott Woolley (2019). https://www.ge.com/news/reports/hot-stuff-to-build-more-affordable-rocket-engines-nasa-researchers-are-using-the-latest-3d-printers-and-1-ancient-metal. Accessed 1 Dec 2021

  57. Launcher and EOS, LPBF E-2 Rocket Engine C18150 Copper alloy. https://launcherspace.com/engine-2. Accessed 1 Dec 2021

  58. Leary M (2019) Design for additive manufacturing. Elsevier, Amsterdam

    Google Scholar 

  59. Bawane K, Srinivasan D, Banerjee D (2018) Microstructural evolution and mechanical properties of direct metal laser sintered (DMLS) CoCrMo after heat treatment. Metall Mater Trans A 49(9):3793–3811

    Article  CAS  Google Scholar 

  60. Sundaram H, Srinivasan D, Baummer J, Microstructure, residual stress and wear behaviour of additively manufactured materials: cold spray L605 and DMLD in718 and maraging steel for gas turbine fuel nozzle repair (2019) GT India Conf. 83532, V002T10A005

  61. Amrita B, Suman D (2017) Microstructure of nickel-base superalloy MAR-M247 additively manufactured through scanning laser epitaxy (SLE). J Alloy Compd 705:806–816

    Article  CAS  Google Scholar 

  62. Liu G, Du D, Wang K, Pu Z, Zhang D, Chang B (2021) High-temperature oxidation behavior of a directionally solidified superalloy repaired by directed energy deposition. Corros Sci 193:109918

    Article  CAS  Google Scholar 

  63. Pollock TM, Clarke AJ, Babu SS (2020) Design and tailoring of alloys for additive manufacturing. Metall Mater Trans A 51A:6000–6019

    Article  CAS  Google Scholar 

  64. Gebisa AW, Lemu HG (2018) Additive manufacturing for the manufacture of gas turbine engine components: literature review and future perspectives. Turbo Expo Power for Land, Sea, and Air 51128, p V006T24A021

  65. Angrish A (2014) A critical analysis of additive manufacturing technologies for aerospace applications. IEEE Aerospace Conference 1–6

  66. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese HAW, De A, Zhang W (2018) Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 92:112–224

    Article  CAS  Google Scholar 

  67. Gisario A, Kazarian M, Martina F, Mehrpouya M (2019) Metal additive manufacturing in the commercial aviation industry: a review. J Manuf Syst 53:124–149

    Article  Google Scholar 

  68. Srinivasan D (2021) Challenges in qualifying additive manufacturing for turbine components—a review. Trans Indian Inst Metals Springer 74:1107–1128

    Article  Google Scholar 

  69. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput-Aided Design 69:65–89

    Article  Google Scholar 

  70. Kok K, Tan XP, Wang P, Nai MLS, Loh NH, Liu E, Tor SB (2018) Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des 139:565–586

    Article  CAS  Google Scholar 

  71. Karthik GM, Kim HS (2021) Heterogeneous aspects of additive manufactured metallic Parts: a review. Met Mater Int 27:1–39

    Article  CAS  Google Scholar 

  72. Collins PC, Brice DA, Samimi P, Ghamarian I, Fraser HL (2016) Microstructural control of additively manufactured metallic materials. Annu Rev Mater Res 46:63–91

    Article  CAS  Google Scholar 

  73. Cooke A, Slotwinski J (2012) Properties of metal powders for additive manufacturing: A review of the state of the art of metal powder property testing. Gaitherburg, MD

  74. Gradl PR (2021) Principles of Directed Energy Deposition for Aerospace Applications

  75. Ametek. https://www.powderclad.com/. Accessed 1 Dec 2021

  76. AP and C. https://www.advancedpowders.com/. Accessed 1 Dec 2021

  77. Aubery and Duval. https://www.eramet.com/en/aubert-duval. Accessed 1 Dec 2021

  78. Carpenter – LPW. https://www.carpenteradditive.com/. Accessed 1 Dec 2021

  79. Elementum 3D RAM based powder. https://www.elementum3d.com/ram-patent. Accessed 1 Dec 2021

  80. EOS DMLS Metal materials. https://www.eos.info/en/additive-manufacturing/3d-printing-metal/dmls-metal-materials. Accessed 1 December 2021

  81. Hoganas. https://www.hoganas.com/. Accessed 1 Dec 2021

  82. Indo MIM. https://www.indo-mim.com/. Accessed 1 Dec 2021

  83. H. C. Starck. https://www.hcstarcksolutions.com/innovation/additive-manufacturing/. Accessed 1 Dec 2021

  84. Heraeous Group. https://www.heraeus.com/en/group/home/home.html. Accessed 1 Dec 2021

  85. m4p material solutions. https://www.metals4printing.com/products/. Accessed 1 Dec 2021

  86. MIMETE. https://www.mimete.com/tag/metal-powders/. Accessed 1 Dec 2021

  87. Oerlikon. https://mymetco.oerlikon.com/en-us/. Accessed 1 Dec 2021

  88. Praxair. https://www.praxairsurfacetechnologies.com/en. Accessed 1 Dec 2021

  89. Pyrogenesis additive. https://pyrogenesisadditive.com/. Accessed 1 Dec 2021

  90. Russel Finex. https://www.russellfinex.com/en/. Accessed 1 Dec 2021

  91. Sandvik, Osprey. www.metalpowder.sandvik. Accessed 1 Dec 2021

  92. Tosoh. https://www.tosohsmd.com/. Accessed 1 Dec 2021

  93. Valimet. https://valimet.com/our-products/am-grades/. Accessed 1 Dec 2021

  94. 6K. https://www.6kinc.com/. Accessed 1 Dec 2021

  95. Kempen K, Thijs L, Humbeeck JV, Kruth JP (2012) Mechanical properties of AlSi10Mg produced by selective laser melting. Phys Procedia 39:439–446

    Article  CAS  Google Scholar 

  96. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater Sci Eng, A 667:139–146

    Article  CAS  Google Scholar 

  97. Uzan NE, Shneck R, Yeheskel O, Frage N (2018) High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM). Addit Manuf 24:257–263

    CAS  Google Scholar 

  98. Li W, Li S, Liu J, Zhang A, Zhou Y, Wei Q, Yan C, Shi Y (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A 663:116–125

    Article  CAS  Google Scholar 

  99. Srinivasan D, Narayana D (2021) Microstructural evolution of LPBF AlSiMg—effect of water quenching vs furnace cooling vs direct aging. ASME GT India

  100. Tradowsky U, White J, Ward R, Read N, Reimers W, Attallah M (2016) Selective laser melting of AlSi10Mg: influence of post-processing on the microstructural and tensile properties development. Mater Design 105:212–222

    Article  CAS  Google Scholar 

  101. Prashanth KG, Debalina B, Wang Z, Gostin PF, Gebert A, Calin M, Kühn U, Kamaraj M, Scudino S, Eckert J (2014) Tribological and corrosion properties of Al–12Si produced by selective laser melting. J Mater Res 29:2044–2054

    Article  CAS  Google Scholar 

  102. Li XP, Wang XJ, Saunders M, Suvorova A, Zhang LC, Liu YJ, Fang MH, Huang ZH, Sercombe TB (2015) A selective laser melting, and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater 95:74–82

    Article  CAS  Google Scholar 

  103. Prashanth KG, Scudino S, Eckert J (2017) Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Mater 126:25–35

    Article  CAS  Google Scholar 

  104. Prashanth KG, Scudino S, Klauss HJ, Surreddi KB, Löber L, Wang L, Chaubey AK, Kühn U, Eckert J (2014) Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng A 590:153–160

    Article  CAS  Google Scholar 

  105. Suryawanshi J, Prashanth KG, Scudino S, Eckert J, Prakash Om, Ramamurty U (2016) Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater 115:285–294

    Article  CAS  Google Scholar 

  106. Prashanth KG, Scudino S, Eckert J (2016) Tensile properties of Al-12Si fabricated via selective laser melting (SLM) at different temperatures. Technologies 4(4):38

    Article  Google Scholar 

  107. Ma P, Prashanth KG, Scudino S, Jia Y, Wang H, Zou C, Wei Z, Eckert J (2014) Influence of annealing on mechanical properties of Al-20Si processed by selective laser melting. Metals 4:28–36

    Article  CAS  Google Scholar 

  108. Kang N, Coddet P, Ammar MR, Liao H, Coddet C (2017) Characterization of the microstructure of a selective laser melting processed Al-50Si alloy: effect of heat treatments. Mater Charact 130:243–249

    Article  CAS  Google Scholar 

  109. Jia YD, Ma P, Prashanth KG, Wang G, Yi J, Scudino S, Cao FY, Sun JF, Eckert J (2017) Microstructure and thermal expansion behavior of Al-50Si synthesized by selective laser melting. J Alloy Compd 699:548–553

    Article  CAS  Google Scholar 

  110. Kang M, Mansori El (2020) A new insight on induced-tribological behaviour of hypereutectic Al-Si alloys manufactured by selective laser melting. Tribol Int 149:105751

    Article  CAS  Google Scholar 

  111. Yang KV, Rometsch P, Jarvis T, Rao J, Cao S, Davies C, Wu X (2018) Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting. Mater Sci Eng, A 712:166–174

    Article  CAS  Google Scholar 

  112. Sajedi Z, Casati R, Poletti MC, Skalon M, Vedani M (2020) Thermal fatigue testing of laser powder bed fusion (L-PBF) processed AlSi7Mg alloy in presence of a quasi-static tensile load LPBF AlSi7Mg—thermal routes. Mater Sci Eng A 789:139617

    Article  CAS  Google Scholar 

  113. Casati R, Coduri M, Checchi S, Vedani M (2021) Insight into the effect of different thermal treatment routes on the microstructure of AlSi7Mg produced by laser powder bed fusion. Mater Charact 172:110881

    Article  CAS  Google Scholar 

  114. Wang M, Song B, Wei Q, Zhang Y, Shi Y (2019) Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy. Mater Sci Eng A 739:463–472

    Article  CAS  Google Scholar 

  115. Rao JH, Zhang Y, Zhang K, Huang A, Davies CHJ, Wu X (2019) Multiple precipitation pathways in an Al-7Si-0.6Mg alloy fabricated by selective laser melting. Scr Mater 160:66–69

    Article  CAS  Google Scholar 

  116. Yang KV, Rometsch P, Davies CHJ, Huang A, Wu X (2018) Effect of heat treatment on the microstructure and anisotropy in mechanical properties of A357 alloy produced by selective laser melting. Mater Des 154:275–290

    Article  CAS  Google Scholar 

  117. Kimura T, Nakamoto T (2016) Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Mater Des 89:1294–1301

    Article  CAS  Google Scholar 

  118. Aversa A, Lorusso M, Trevisan F, Ambrosio EP, Calignano F, Manfredi D, Biamino S, Fino P, Lombardi M, Pavese M (2017) Effect of process and post-process conditions on the mechanical properties of an A357 alloy produced via laser powder bed fusion. Metals 7(2):68

    Article  CAS  Google Scholar 

  119. Kaufmann N, Imran M, Wischeropp TM, Emmelmann C, Siddique S, Walther F (2016) Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM). Phys Procedia 83:918–926

    Article  CAS  Google Scholar 

  120. Carluccio D, Bermingham MJ, Zhang Y, StJohn DH, Yang Y, Rometsch PA, Wu X, Dargusch MS (2018) Grain refinement of laser remelted Al-7Si and 6061 aluminium alloys with Tibor® and scandium additions. J Manuf Process 35:715–720

    Article  Google Scholar 

  121. Li XP, Ji G, Chen Z, Addad A, Wu Y, Wang HW, Vleugels J, Van Humbeeck J, Kruth JP (2017) Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater 129:183–193

    Article  CAS  Google Scholar 

  122. Tan Q, Zhang J, Mo N, Fan Z, Yin Y, Bermingham M, Liu Y, Huang H, Zhang MX (2020) A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles. Addit Manuf 32:101034

    CAS  Google Scholar 

  123. Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA, Pollock TM (2017) 3D printing of high-strength aluminium alloys. Nature 549:365–369

    Article  CAS  Google Scholar 

  124. Lei Z, Bi J, Chen Y, Chen X, Qin X, Tian Z (2019) Effect of energy density on formability, microstructure and micro-hardness of selective laser melted Sc- and Zr- modified 7075 aluminum alloy. Powder Technol 356:594–606

    Article  CAS  Google Scholar 

  125. Otani Y, Sasaki S (2020) Effects of the addition of silicon to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability. Mater Sci Eng A 777:139079

    Article  CAS  Google Scholar 

  126. Sistiaga MLM, Mertens R, Vrancken B, Wang X, Hooreweder BV, Kruth JP, Humbeeck JV (2016) Changing the alloy composition of Al7075 for better processability by selective laser melting. J Mater Process Technol 238:437–445

    Article  CAS  Google Scholar 

  127. Babu AP, Kairy SK, Huang A, Birbilis N (2020) Laser powder bed fusion of high solute Al-Zn-Mg alloys: processing, characterization and properties. Mater Design 196:109183

    Article  CAS  Google Scholar 

  128. Mertensa R, Dadbakhsha S, Van Humbeeckb J, Krutha JP (2018) Application of base plate preheating during selective laser melting. Procedia CIRP 74:5–11

    Article  Google Scholar 

  129. Reschetnik W, Brüggemann JP, Aydinöz ME, Grydin O, Hoyer KP, Kullmer G, Richard HA (2016) Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy. Procedia Struct Integr 2:304023048

    Article  Google Scholar 

  130. Benoit MJ, Sun SD, Brandt M, Easton MA (2021) Processing window for laser metal deposition of Al 7075 powder with minimized defects. J Manuf Process 64:1484–1492

    Article  Google Scholar 

  131. Brice CA, Tayon WA, Newman JA, Kral MV, Bishop C, Sokolova A (2018) Effect of compositional changes on microstructure in additively manufactured aluminum alloy 2139. Mater Charact 143:50–58

    Article  CAS  Google Scholar 

  132. Brice C, Shenoy R, Kral M, Buchannan K (2015) Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing. Mater Sci Eng A 648:9–14

    Article  CAS  Google Scholar 

  133. EOS releases new high-strength, lightweight Al2139 aluminium alloy. https://www.metal-am.com/eos-releases-new-high-strength-lightweight-al2139-aluminium-alloy/. Accessed 1 Dec 2021

  134. Tan Q, Zhang J, Sun Q, Fan Z, Li YY, Liu Y, Zhang MX (2020) Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles. Acta Mater 196:1–16

    Article  CAS  Google Scholar 

  135. Zhang H, Zhu H, Nie X, Yin J, Hu Z, Zeng X (2017) Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy. Scr Mater 134(6–10):136

    Google Scholar 

  136. Li G, Lyu S, Zheng R, Li Q, Ameyama K, Xiao W, Chaoli M (2019) Strengthening 2024Al alloy by novel core-shell structured Ti/B4C composite particles. Mater Sci Eng A 755:231–234

    Article  CAS  Google Scholar 

  137. Biffi CA, Bassani P, Fiocchi J, Albu M, Tuissi A (2021) Selective laser melting of AlCu-TiB2 alloy using pulsed wave laser emission mode: processability, microstructure and mechanical properties. Mater Design 204:109628

    Article  CAS  Google Scholar 

  138. Gu T, Chen B, Tan C, Feng J (2019) Microstructure evolution and mechanical properties of laser additive manufacturing of high strength Al-Cu-Mg alloy. Opt Laser Technol 112:140–150

    Article  CAS  Google Scholar 

  139. Ahuja B, Karg M, Nagulin KY, Schmidt M (2014) Fabrication and characterization of high strength Al-Cu alloys processed using laser beam melting in metal powder bed. Phys Procedia 56:135–146

    Article  CAS  Google Scholar 

  140. Tan O, Liu Y, Fan Z, Zhang J, Yin Y, Zhang MX (2020) Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy. J Mater Sci Technol 58:34–45

    Article  Google Scholar 

  141. Hereaus Datasheet Scalmalloy. https://www.heraeus.com/media/media/group/doc_group/products_1/additivemanufacturing/datasheets_en/Scalmalloy.pdf. Accessed 1 Dec 2021

  142. Qbau N, Nam ND, Hien NT, Ca NX (2020) Development of light weight high strength aluminum alloy for selective laser melting. J Mater Res Technol 9:14075–14081

    Article  CAS  Google Scholar 

  143. Awd M, Tenkamp J, Hirtler M, Siddique S, Bambach M, Walther F (2018) Comparison of microstructure and mechanical properties of Scalmalloy® produced by selective laser melting and laser metal deposition. Materials 11(1):17

    Article  CAS  Google Scholar 

  144. Ren L, Gu H, Wang W, Wang S, Li C, Wang Z, Zhai Y, Ma P (2020) Microstructure and properties of Al-6.0Mg-0.3Sc Alloy Deposited by Double-Wire Arc Additive Manufacturing. 3D Printing and Additive Manufacturing

  145. Spierings AB, Dawson K, Voegtlin KM, Palm F, Uggowitzer (2016) Microstructure and mechanical properties of as-processed scandium modified aluminium using selective laser melting. CIRP Ann Manuf Technol 65:213–216

    Article  Google Scholar 

  146. Reiber T, Rüdesheim T, Weigold M, Abele E, Musekamp J, Oechsner M (2021) Influence of contour scans on surface roughness and pore formation using Scalmalloy® manufactured by laser powder bed fusion (PBF-LB). Mater Sci Eng Technol 52:468–481

    Google Scholar 

  147. Schmidtke K, Palm F, Hawkins A, Emmelmann C (2011) Process and mechanical properties: applicability of a Scandium modified Al-alloy for laser additive manufacturing. Phys Procedia 12:369–374

    Article  CAS  Google Scholar 

  148. Kuo CN, Peng PC, Liu DH, Chao YC (2021) Microstructure evolution and mechanical property response of 3D-Printed Scalmalloy with different heat-treatment times at 325 °C. Metals 11:555

    Article  CAS  Google Scholar 

  149. Spierings AB, Dawson K, Heeling T, Uggowitzer PJ, Schäublin R, Palm F, Wegener K (2017) Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting. Mater Design 115:52–63

    Article  CAS  Google Scholar 

  150. Croteau JR, Griffiths S, Rossell MD, Leinenbach C, Kenel C, Jansen V, Seidman DN, Dunand DC, Vo NQ (2018) Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting. Acta Mater 153:35–44

    Article  CAS  Google Scholar 

  151. Zhang H, Gu DD, Yang J, Dai D, Zhao T, Hong C, Gasser A, Poprawe R (2018) Selective laser melting of rare earth element Sc modified aluminum alloy: thermodynamics of precipitation behavior and its influence on mechanical properties. Addit Manuf 23:1–12

    CAS  Google Scholar 

  152. Li R, Wang M, Yuan T, Song B, Chen C, Zhou K, Cao P (2017) Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: processing, microstructure, and properties. Powder Technol 319:117–128

    Article  CAS  Google Scholar 

  153. Shi Y, Yang K, Kairy SK, Palm F, Wu X, Rometsch PA (2018) Effect of platform temperature on the porosity, microstructure and mechanical properties of an Al–Mg–Sc–Zr alloy fabricated by selective laser melting. Mater Sci Eng A 732:41–52

    Article  CAS  Google Scholar 

  154. Griffiths S, Rossell MD, Croteau J, Vo NQ, Dunand DC, Leinenbach C (2018) Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy. Mater Charact 143:34–42

    Article  CAS  Google Scholar 

  155. Aeromet International Ltd. https://www.aeromet.co.uk/a20x. Accessed 1 Dec 2021

  156. A2024 RAM2. https://www.elementum3d.com/al2024-ram2-data-sheet. Accessed 1 Dec 2021

  157. A2024 RAM10. https://www.elementum3d.com/almmc-hs-data-sheet. Accessed 1 Dec 2021

  158. A7050 RAM2. https://www.elementum3d.com/a7050-ram2-data-sheet. Accessed 1 Dec 2021

  159. Sarraf HT, Seyed Alireza Torbati-Sarraf SA, Chawla N, Poursaee A (2020) A comparative study of corrosion behavior of an additively manufactured Al-6061 RAM2 with extruded Al-6061 T6. Corros Sci 174:108838

    Article  CAS  Google Scholar 

  160. Waller D, Polizzi AJ, Iten JJ (2019) Feasibility study of additively manufactured Al-6061 RAM2 parts for aerospace applications. AIAA 2019 Scitech Forum 0409, pp 7–11

  161. Kuhns M, Rixon G, Roberson T, Lohman L, Byron J, Lamb S, Noble J (2019) PermiAM: Porous additively manufactured L-PBF flow property characterization for rocket engines. AIAA propulsion and energy 2019 Forum-4308, pp 19–22

  162. Weed K, Waller D, Brown B, Leone C, Musselman M (2020) Additive manufacturing applications in heat exchangers, radiators and heaters, AIAA SciTech Forum, pp 6–10

  163. Gamma alloys. https://gammaalloys.com/?_sm_nck=1. Accessed 1 Dec 2021

  164. Geng H, Li J, Xiong J, Lin X, Zhang F (2006) Geometric limitation and tensile properties of wire and arc additive manufacturing 5A06 aluminum alloy parts. J Mater Eng Perform 26:621–629

    Article  CAS  Google Scholar 

  165. Li XP, Kang CW, Huang H, Zhang LC, Sercombe TB (2014) Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: processing, microstructure evolution and mechanical properties. Mater Sci Eng A 606:370–379

    Article  CAS  Google Scholar 

  166. Prashanth KG, Shahabi HS, Attar H, Srivastava VC, Ellendt N, Uhlenwinkel V, Eckert J, Scudino S (2015) Production of high strength Al85Nd8Ni5Co2alloy by selective laser melting. Addit Manuf 6:1–5

    CAS  Google Scholar 

  167. Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R (2019) 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci 106:100578

    Article  CAS  Google Scholar 

  168. Dutta B, Froes FH (2015) The additive manufacturing (AM) of titanium alloys: Titanium powder metallurgy. Elseiver, Amsterdam, pp 447–468

    Google Scholar 

  169. Li P, Warner DH, Fatemi A, Phan N (2016) Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research. Int J Fatigue 85:130–214

    Article  CAS  Google Scholar 

  170. Peters M, Kumpfert J, Ward CH, Leyens C (2003) Titanium alloys for aerospace applications. Adv Eng Mater 5(6):419–427

    Article  CAS  Google Scholar 

  171. Uhlmann E, Kersting R, Klein TB, Cruz MF, Borille AV (2015) Additive manufacturing of titanium alloy for aircraft components. Procedia CIRP 35:55–60

    Article  Google Scholar 

  172. Sciaky Titanium parts. https://www.sciaky.com/additive-manufacturing-titanium-parts. Accessed 1 Dec 2021

  173. Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Design 164:107552

    Article  CAS  Google Scholar 

  174. Wauthle JR, Vrancken B, Beynaerts B, Jorissen K, Schrooten J, Kruth JP, Humbeeck JV (2015) Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit Manuf 5:77–84

    CAS  Google Scholar 

  175. Dejun JI, Fanchun LI, Zhang Y (2020) 3D-printing process design of lattice compressor impeller based on residual stress and deformation. Sci Rep 10(1):600

    Article  CAS  Google Scholar 

  176. Clemens H, Mayer S (2013) Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater 15:191–215

    Article  CAS  Google Scholar 

  177. Löber L, Schimansky FP, Kühn U, Pyczak F, Eckert J (2014) Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy. J Mater Process Technol 214:1852–1860

    Article  CAS  Google Scholar 

  178. Gussone J, Hagedorn YC, Gherekhloo H, Kasperovich G, Merzouk T, Hausmann J (2015) Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures. Intermetallics 66:133–140

    Article  CAS  Google Scholar 

  179. Vilaro T, Kottman-Rexerodt V, Thomas M, Colin C, Bertrand P, Thivillon L, Abed S, Ji V, Aubry P, Peyre P, Malot T (2010) Direct fabrication of a Ti-47Al-2Cr-2Nb alloy by selective laser melting and direct metal deposition processes. Adv Mater Res 89–91:586–591

    Article  CAS  Google Scholar 

  180. Franzen SF, Karlsson B, Dehoff R, Ackelid U, Rios O, Parish C, Peters W (2011) Microstructural properties of gamma titanium aluminide manufactured by electron beam melting. Miner Metals Mater Soc 455–462

  181. Schwerdtfeger J, Körner C (2014) Selective electron beam melting of Ti-48Al-2Nb-2Cr: microstructure and aluminium loss. Intermetallics 49:29–35

    Article  CAS  Google Scholar 

  182. Cormier D, Harrysson O, Mahale T, West H (2007) Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders. Adv Mater Sci Eng, Article ID 34737

  183. Murr LE, Gaytan SM, Ceylan A, Martinez E, Martinez JL, Hernandez DH, Machado BI, Ramirez DA, Medina F, Collins S, Wicker RB (2010) Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater 58:1887–1894

    Article  CAS  Google Scholar 

  184. Biamino S, Penna A, Ackelid U, Sabbadini S, Tassa O, Fino P, Pavese M, Gennaro P, Badini C (2011) Electron beam melting of Ti48Al2Cr2Nb alloy: microstructure and mechanical properties investigation. Intermetallics 19:776–781

    Article  CAS  Google Scholar 

  185. Liu W, Dupont JN (2004) Fabrication of carbide-particle-reinforced titanium aluminide matrix composites by laser-engineered net shaping. Metall Mater Trans A 35:1133–1140

    Article  Google Scholar 

  186. Srivastava D, Chang ITH, Loretto MH (2001) The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples. Intermetallics 9:1003–1013

    Article  CAS  Google Scholar 

  187. Kenel C, Dawson K, Barras J, Hauser C, Dasargyri G, Bauer T, Colella A, Spierings AB, Tatlock GJ, Leinenbach C, Wegener K (2017) Microstructure and oxide particle stability in a novel ODS γ-TiAl alloy processed by spark plasma sintering and laser additive manufacturing. Intermetallics 90:63–73

    Article  CAS  Google Scholar 

  188. Fan H, Yang S (2016) Effects of direct aging on near-alpha Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) titanium alloy fabricated by selective laser melting (SLM). Mater Sci Eng A 788:139533

    Article  CAS  Google Scholar 

  189. Chen Y, Clark SJ, Sinclair L, Leung CLA, Marussi S, Connolley T, Atwood RC, Baxter GJ, Jones MA, Todd I, Lee (2021) PD Synchrotron x-ray imaging of directed energy deposition additive manufacturing of titanium alloy Ti-6242. Addit Manuf 41:101969

    CAS  Google Scholar 

  190. Schwab H, Palm F, Kühn U, Eckert J (2016) Microstructure and mechanical properties of the near-beta titanium alloy Ti-5553 processed by selective laser melting. Mater Des 105:75–80

    Article  CAS  Google Scholar 

  191. Schwab H, Bönisch M, Giebeler L, Gustmann T, Eckert J, Kühn U (2017) Processing of Ti-5553 with improved mechanical properties via an in-situ heat treatment combining selective laser melting and substrate plate heating. Mater Des 130:83–89

    Article  CAS  Google Scholar 

  192. Liu YJ, Li SJ, Wang HL, Hou WT, Hao YL, Yang R, Sercombe TB, Zhang LC (2016) Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater 113:56–67

    Article  CAS  Google Scholar 

  193. Liu YJ, Wang HL, Li SJ, Wang SG, Wang WJ, Hou WT, Hao YL, Yang R, Zhang LC (2017) Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater 126:58–66

    Article  CAS  Google Scholar 

  194. Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB (2011) Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr Mater 65:21–24

    Article  CAS  Google Scholar 

  195. Wang Q, Han C, Choma T, Wei Q, Yan C, Song B, Shi Y (2017) Effect of Nb content on microstructure, property and in vitro apatite-forming capability of Ti-Nb alloys fabricated via selective laser melting. Mater Des 126:268–277

    Article  CAS  Google Scholar 

  196. Fischer M, Joguet D, Robin G, Peltier L, Laheurte P (2016) In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Mater Sci Eng, C 62:852–859

    Article  CAS  Google Scholar 

  197. Sing SL, Yeong WY, Wiria FE (2016) Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties. J Alloy Compd 660:461–470

    Article  CAS  Google Scholar 

  198. Sing SL, Wiria FE, Yeong WY (2018) Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior. Robot Comput Integr Manuf 49:170–180

    Article  Google Scholar 

  199. Bhardwaj T, Shukla M, Paul CP, Bindra KS (2019) Direct energy deposition—laser additive manufacturing of titanium-molybdenum alloy: parametric studies, microstructure and mechanical properties. J Alloy Compd 787:1238–1248

    Article  CAS  Google Scholar 

  200. Mantri SA, Alam T, Zheng Y, Williams JC, Banerjee R (2020) Influence of post deposition annealing on microstructure and properties of laser additively manufactured titanium copper alloys. Addit Manuf 32:101067

    CAS  Google Scholar 

  201. Zhang K, Tian X, Bermingham M, Rao J, Jia Q, Zhu Y, Wu X, Cao S, Huang A (2019) Effects of boron addition on microstructures and mechanical properties of Ti-6Al-4V manufactured by direct laser deposition. Mater Des 184:108191

    Article  CAS  Google Scholar 

  202. Bermingham MJ, StJohn DH, Krynen J, Tedman-Jones S, Dargusch MS (2019) Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta Mater 168:261–274

    Article  CAS  Google Scholar 

  203. Polozov I, Sufiiarov V, Popovich A, Masaylo D, Grigoriev A (2018) Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing. J Alloy Compd 763:436–445

    Article  CAS  Google Scholar 

  204. Azizi H, Zurob H, Bose B, Ghiaasiaan SR, Wang X, Coulson S, Duz V, Phillion AB (2018) Additive manufacturing of a novel Ti-Al-V-Fe alloy using selective laser melting. Addit Manuf 21:529–535

    CAS  Google Scholar 

  205. Li GC, Li J, Tian XJ, Cheng X, He B, Wang HM (2017) Microstructure and properties of a novel titanium alloy Ti-6Al-2V-1.5Mo-0.5Zr-0.3Si manufactured by laser additive manufacturing. Mater Sci Eng A 684:233–238

    Article  CAS  Google Scholar 

  206. Hosseini E, Popovich VA (2019) A review of mechanical properties of additively manufactured Inconel 718. Addit Manuf 30:100877

    CAS  Google Scholar 

  207. Alena K, Vladimir B, Sylvain T (2017) Elevated temperature mechanical behavior of IN625 alloy processed by laser powder-bed fusion. Mater Sci Eng A 700:540–553

    Article  CAS  Google Scholar 

  208. Xu FJ, Lv YH, Xu BS, Liu YX, Shu FY, He P (2013) Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition. Mater Des 45:446–455

    Article  CAS  Google Scholar 

  209. Giulio M, Massimo L, Simone P et al (2016) Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion. Mater Sci Eng A 729:64–75

    Google Scholar 

  210. List FA, Dehoff RR, Lowe LE, Sames WJ (2014) Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing. Mater Sci Eng A 615:191–197

    Article  CAS  Google Scholar 

  211. Marchese G, Colera XG, Calignano F, Lorusso M, Biamino S, Minetola P, Manfredi D (2017) Characterization and comparison of inconel 625 processed by selective laser melting and laser metal deposition. Adv Eng Mater 19(3):1600635

    Article  CAS  Google Scholar 

  212. Kreitcberg A, Inaekyan K, Turenne S, Brailovski V (2019) Temperature- and time-dependent mechanical behavior of post-treated IN625 alloy processed by laser powder bed fusion. J Manuf Mater Process 3:75

    CAS  Google Scholar 

  213. Deng D, Peng RL, Brodin H, Moverare J (2018) Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments. Mater Sci Eng A 713:294–306

    Article  CAS  Google Scholar 

  214. Srinivasan D, Zarandi F, Bennett MW (2021) Understanding the high temperature mechanical behaviour of PBF-LB/IN718 via microstructural characterization. In: International conference on Additive Manufacturing (ICAM-2021)

  215. Korner C, Helmer H, Bauerei A, Singer RF (2014) Tailoring the grain structure of IN718 during selective electron beam melting. MATEC Web Conf 14:08001

    Article  Google Scholar 

  216. Karimi P, Sadeghi E, Ålgårdh J, Keshavarzkermani A, Esmaeilizadeh R, Toyserkani E, Andersson J (2021) Columnar-to-equiaxed grain transition in powder bed fusion via mimicking casting solidification and promoting in situ recrystallization. Addit Manuf 46:102086

    CAS  Google Scholar 

  217. Newell DJ, O’Hara RP, Cobb GR, Palazotto AN, Kirka MM, Burggraf LW, Hess JA (2019) Mitigation of scan strategy effects and material anisotropy through supersolvus annealing in LPBF IN718. Mater Sci Eng A 764:138230

    Article  CAS  Google Scholar 

  218. Kontis P, Chauvet E, Peng Z, He J, Kwiatkowski da Silva A, Raabe D, Tassin C, Blandin JJ, Abed S, Dendievel R, Gault B, Martin G (2019) Atomic-scale grain boundary engineering to overcome hot-cracking in additively manufactured superalloys. Acta Mater 177:209–221

    Article  CAS  Google Scholar 

  219. Harrison NJ, Toddb I, Mumtaz K (2015) Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach. Acta Mater 94:59–68

    Article  CAS  Google Scholar 

  220. Divya VD, Muñoz-Moreno R, Messé OMDM, Barnard JS, Baker S, Illston T, Stone HJ (2016) Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment. Mater Charact 114:62–74

    Article  CAS  Google Scholar 

  221. Muñoz-Moreno R, Divya VD, Driver SL, Messé OMDM, Illston T, Baker S, Carpenter MA, Stone HJ (2016) Effect of heat treatment on the microstructure, texture and elastic Anisotropy Of the nickel-based superalloy CM247LC processed by selective laser melting. Mater Sci Eng A 674:529–539

    Article  CAS  Google Scholar 

  222. Wang X, Carter LN, Pang B, Attallah MM, Loretto MH (2017) Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy. Acta Mater 128:87–95

    Article  CAS  Google Scholar 

  223. Smith CS, Aboulkhair N, Parry L, Tuck C, Ashcroft IA, Clare A (2017) Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys. Addit Manuf 15:113–122

    Google Scholar 

  224. Kunze K, Etter T, Grässlin J, Shklover V (2015) Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM). Mater Sci Eng A 620:213–222

    Article  CAS  Google Scholar 

  225. Geiger F, Kunze K, Etter T (2016) Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies. Mater Sci Eng A 661:240–246

    Article  CAS  Google Scholar 

  226. Engeli R, Etter T, Hövel S, Wegener K (2016) Processability of different IN738LC powder batches by selective laser melting. J Mater Process Technol 229:484–491

    Article  CAS  Google Scholar 

  227. Kanagarajah P, Brenne F, Niendorf T, Maier HJ (2013) Inconel 939 processed by selective laser melting: effect of Microstructure and temperature on the mechanical properties under static and cyclic loading. Mater Sci Eng A 588:188–195

    Article  CAS  Google Scholar 

  228. Vilaro T, Colin C, Bartout JD, Nazé L, Sennour M (2012) Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Mater Sci Eng A 534:446–451

    Article  CAS  Google Scholar 

  229. Guoliang Z, Weitao P, Rui W, Donghong W, Da S, Liang Z, Anping D, Baode S (2021) Microstructures and mechanical properties of GTD222 superalloy fabricated by selective laser melting. Materials Science and Engineering A 807:140668

  230. Jedynak A, Sviridov A, Bambach M, Beckers D, Graf G (2020) On the potential of using selective laser melting for the fast development of forging alloys at the example of Waspaloy. Procedia Manuf 47:1149–1153

    Article  Google Scholar 

  231. Han Q, Gu Y, Soe S, Lacan F, Setchi R (2020) Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing. Opt Laser Technol 124:105984

    Article  CAS  Google Scholar 

  232. Perez-Soriano EM, Ariza E, Arevalo C, Montealegre-Melendez I, Kitzmantel M, Neubauer E (2020) Processing by additive manufacturing based on plasma transferred arc of Hastelloy in air and argon atmosphere. Metals 10:200

    Article  CAS  Google Scholar 

  233. Tian Y, Tomus D, Rometsch P, Wu X (2017) Influences of processing parameters on surface roughness of HastelloyX produced by selective laser melting. Addit Manuf 13:103–112

    CAS  Google Scholar 

  234. Jinoop AN, Paul CP, Nayak SK, Ganesh Kumar J, Bindra KS (2021) Effect of laser energy per unit powder feed on Hastelloy-X walls built by laser directed energy deposition based additive manufacturing. Opt Laser Technol 138:106845

    Article  CAS  Google Scholar 

  235. Kuner MC, Romedenne M, Fernandez-Zelaia P, Dryepondt S (2020) Quantitatively accounting for the effects of surface topography on the oxidation kinetics of additive manufactured Hastelloy X processed by electron beam melting. Add Manuf 36:101431

    CAS  Google Scholar 

  236. Jinoop AN, Paul CP, Bindra KS (2019) Laser assisted direct energy deposition of Hastelloy-X. Opt Laser Technol 109:14–19

    Article  CAS  Google Scholar 

  237. Ghiaasiaan R, Muhammad M, Gradl PR, Shao S, Shamsaei N (2021) Superior tensile properties of Hastelloy X enabled by additive manufacturing. Mater Res Lett 9(7):308–314

    Article  CAS  Google Scholar 

  238. Esmaeilizadeh R, Ali U, Keshavarzkermani A, Mahmoodkhani Y, Marzbanrad E, Toyserkani E (2019) On the effect of spatter particles distribution on the quality of Hastelloy X parts made by laser powder-bed fusion additive manufacturing. J Manuf Process 37:11–20

    Article  Google Scholar 

  239. Han Q, Gu Y, Setchi R, Lacan F, Johnston R, Evans SL, Yang S (2019) Additive manufacturing of high-strength crack-free Ni based Hastelloy X superalloy. Addit Manuf 30:100919

    CAS  Google Scholar 

  240. Sanchez-Mata O, Wang X, Muñiz-Lerma JA, Shandiz MA, Gauvin BM (2018) Fabrication of crack-free nickel-based superalloy considered non-weldable during laser powder bed fusion. Materials 11:1288

    Article  CAS  Google Scholar 

  241. Deshpande A, Nath SD, Atre S, Hsu K (2020) Effect of post processing heat treatment routes on microstructure and mechanical property evolution of haynes 282 Ni-based superalloy fabricated with selective laser melting (SLM). Metals 10:629

    Article  CAS  Google Scholar 

  242. Ramakrishnan A, Dinda GP (2019) Microstructure and mechanical properties of direct laser metal deposited Haynes 282 superalloy. Mater Sci Eng A 748:347–356

    Article  CAS  Google Scholar 

  243. Boswell J, Jones J, Barnard N, Clark D, Whittaker M, Lancaster R (2021) The effects of energy density and heat treatment on the microstructure and mechanical properties of laser additive manufactured Haynes 282. Mater Design 205:109725

    Article  CAS  Google Scholar 

  244. Shaikh AS, Schulz F, Minet-Lallemand K, Hryh E (2021) Microstructure and mechanical properties of Haynes 282 superalloy produced by laser powder bed fusion. Mater Today Commun 26:102038

    Article  CAS  Google Scholar 

  245. Unocic KA, Kiirka MM, Cakmak E, Greeley D, Okello A, Dryepondt S (2020) Evaluation of additive electron beam melting of Haynes 282 alloy. Mater Sci Eng A 772:138607

    Article  CAS  Google Scholar 

  246. Otto R, Brøtan V, Carvalho PA, Reiersen M, Graff JS, Sunding MF, Berg OA, Diplas S, Azar AS (2021) Roadmap for additive manufacturing of Haynes282® superalloy by laser beam powder bed fusion (PBF-LB) technology. Mater Design 204:109656

    Article  CAS  Google Scholar 

  247. Bauer T, Dawson K, Spierings AB, Wegener K (2015) Microstructure and mechanical characterization of SLM processed Haynes® 230®. In: Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium 813 – 822

  248. Murr LE, Martinez E, Pan XM, Gaytan SM, Castro JA, Terrazas CA, Medina F, Wicker RB, Abbott DH (2013) Microstructures of Rene 142 nickel-based superalloy fabricated by electron beam melting. Acta Mater 61:4289–4296

    Article  CAS  Google Scholar 

  249. Basak A, Acharyaa R, Das S (2018) Epitaxial deposition of nickel-based superalloy René 142 through scanning laser epitaxy (SLE). Addit Manuf 22:665–671

    CAS  Google Scholar 

  250. Yang J, Li F, Wang Z, Zeng X (2015) Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication. J Mater Process Technol 225:229–239

    Article  CAS  Google Scholar 

  251. Hassell T, Carstensen T (2020) Properties and anisotropy behaviour of a nickel base alloy material produced by robot-based wire and arc additive manufacturing. Weld World 64:1921–1931

    Article  CAS  Google Scholar 

  252. Guijun Bi G, Sun C-N, Chen H-C, Ng FL, Ma CK (2014) Microstructure and tensile properties of superalloy IN100 fabricated by micro-laser aided additive manufacturing. Mater Des 60:401–408

    Article  CAS  Google Scholar 

  253. Korner CK, Ramsperger M, Meid C, Burger D, Wollgramm P, Bartsch M, Eggeler G (2018) Microstructure and mechanical properties of CMSX-4 single crystals prepared by additive manufacturing. Metall Mater Trans A 49A:3781–3792

    Article  CAS  Google Scholar 

  254. Chauvet E, Tassin C, Blandin JJ, Dendievel R, Martin G (2018) Producing Ni-base superalloys single crystal by selective electron beam melting. Scr Mater 152:15–19

    Article  CAS  Google Scholar 

  255. Zhou Z, Lei Q, Yan Z, Wang Z, Shang Y, Li Y, Qi H, Jiang L, Liu Y, Huang L (2021) Effects of process parameters on microstructure and cracking susceptibility of a single crystal superalloy fabricated by directed energy deposition. Mater Design 198:109296

    Article  CAS  Google Scholar 

  256. Zhou N, Dicus AD, Forsik SAJ, Wang T, Colombo GA, Epler ME (2020) Development of a new alumina-forming crack-resistant high-γ′ fraction Ni-base superalloy for additive manufacturing, Superalloys 1046–1054

  257. Jena A, Atabay SE, Gontcharov A, Lowden P, Brochu M (2021) Laser powder bed fusion of a new high gamma prime Ni-based superalloy with improved weldability. Mater Design 208:109895

    Article  CAS  Google Scholar 

  258. Basak A, Additive Manufacturing of High-Gamma Prime Nickel-Based Superalloys through Selective Laser Melting (SLM), Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

  259. Tang YT, Panwisawas C, Ghoussoub JN, Gong Y, Clark JWG, Németh AN, McCartney DG, Reed RC (2021) Alloys-by-design: application to new superalloys for additive manufacturing. Acta Mater 202:417–436

    Article  CAS  Google Scholar 

  260. Tang YT, Ghoussoub JN, Panwisawas C, Collins DM, Amirkhanlou S, Clark JWG, Németh AAN, McCartney DG, Reed RC (2020) The Effect of Heat Treatment on Tensile Yielding Response of the New Superalloy ABD-900AM for Additive Manufacturing, Superalloys 2020, The Minerals, Metals and Materials Series

  261. Acharya R, Bansal R, Gambone JJ, Kaplan MA, Fuchs GE, Rudawski NG, Das S (2015) Additive manufacturing and characterization of Rene 80 superalloy processed through scanning laser epitaxy for turbine engine hot-section component repair. Adv Eng Mater 17:7

    Article  CAS  Google Scholar 

  262. Basak A, Das S (2017) Additive manufacturing of nickel-base superalloy Rene N5 through scanning laser epitaxy (SLE) material processing, microstructures, and microhardness properties. Adv Eng Mater 19:1600690

    Article  CAS  Google Scholar 

  263. Acharya R, Das S (2015) Additive manufacturing of IN100 superalloy through scanning laser epitaxy for turbine engine hot-section component repair: process development, modeling, microstructural characterization, and process control. Metall Mater Trans A 46A:3864–3875

    Article  CAS  Google Scholar 

  264. Basak A, Das S (2018) Additive manufacturing of nickel-base superalloy IN100 through scanning laser epitaxy. J Metals 70:53–59

    CAS  Google Scholar 

  265. Liu G, Du D, Wang K, Pu Z, Zhang D, Chang B (2021) Microstructure and nanoindentation creep behavior of IC10 directionally solidified superalloy repaired by laser metal deposition. Mater Sci Eng A 808:140911

    Article  CAS  Google Scholar 

  266. Barucca G, Santecchia E, Majni G, Girardin E, Bassoli E, Denti L, Gatto A, Iuliano L, Moskalewicz T, Mengucci P (2015) Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering. Mater Sci Eng C 48:263–269

    Article  CAS  Google Scholar 

  267. Rao S, Reddy S, Srinivasan D, Ananthanarayanan D (2017) Study of Process Parameter and Powder Variability on the Properties and Recrystallization Behavior of Direct Metal Laser Sintered CoCrMo. In: Proceedings of the Gas Turbine India Conference December 7–8

  268. Chimmat M, Srinivasan D (2019) Understanding the residual stresses in DMLS SS316L and CoCrMo alloys. Proceedia Struct Integr 14:746–757

    Article  Google Scholar 

  269. Sujith S, Srinivasan D (2017) Oxidation coatings on additively manufactured CoCrMo. In: Proceedings of the Gas Turbine India Conference, December 7–8

  270. Reddy SA, Srinivasan D (2019) Small scale mechanical testing for additive manufactured alloys. Proceedia Struct Integr 14:449–466

    Article  Google Scholar 

  271. Lin Z, Ya W, Subramanian VV, Goulas C, Castri B, Hermans MJM, Pathiraj B (2020) Deposition of Stellite 6 alloy on steel substrates using wire and arc additive manufacturing. Int J Adv Manuf Technol 111:411–426

    Article  Google Scholar 

  272. Traxel KD, Bandyopadhyay A (2019) First demonstration of additive manufacturing of cutting tools using directed energy deposition system: Stellite™-based cutting tools. Addit Manuf 25:460–468

    CAS  Google Scholar 

  273. Stoyanova P, Andre K, Prichard P, Yao M, Gey C (2016) Microstructural and mechanical characterization of Mo- containing Stellite alloys produced by three-dimensional printing. Procedia CIRP 45:167–170

    Article  Google Scholar 

  274. Ren B, Zhang M, Chen C, Wang X, Zou T, Hu Z (2017) Effect of heat treatment on microstructure and mechanical properties of stellite 12 fabricated by laser additive manufacturing. JMEPEG 26:5404–5413

    Article  CAS  Google Scholar 

  275. Ferreri NC, Ghorbanpour S, Bhowmik S, Lussier R, Bicknell J, Patterson BM, Knezevic M (2019) Effects of build orientation and heat treatment on the evolution of microstructure and mechanical properties of alloy Mar-M-509 fabricated via laser powder bed fusion. Int J Plast 121:116–133

    Article  CAS  Google Scholar 

  276. Cloots M, Kunze K, Uggowitzer PJ, Wegener K (2016) Microstructural characteristics of the nickel-based alloy IN738LC and the cobalt-based alloy Mar-M509 produced by selective laser melting. Mater Sci Eng A 658:68–76

    Article  CAS  Google Scholar 

  277. Murray SP, Pusch KM, Polonsky AT, Torbet CJ, Seward GGE, Zhou N, Forsik SAJ, Nandwana P, Kirka MM, Dehoff RR, Slye WE, Pollock TM (2020) A defect-resistant Co–Ni superalloy for 3D printing. Nat Commun 11:4975

    Article  CAS  Google Scholar 

  278. Phan MAL, Fraser D, Gulizia S, Chen ZW (2021) Mechanism of hot crack propagation and prevention of crack formation during electron beam powder bed fusion of a difficult-to-weld Co-Cr-Ni-W superalloy. J Mater Process Technol 293:117088

    Article  CAS  Google Scholar 

  279. Philips NR, Carl M, Cunningham NJ (2020) New opportunities in refractory alloys. Metall Mater Trans A 51:3299–3310

    Article  CAS  Google Scholar 

  280. Goncharov IS, Razumov NG, Silin AO, Ozerskoi NE, Shamshurin AI, Kim A, Wang QS, Popovich AA (2019) Synthesis of Nb-based powder alloy by mechanical alloying and plasma spheroidization processes for additive manufacturing. Mater Lett 245:188–191

    Article  CAS  Google Scholar 

  281. Thijs L, Sistiaga MLM, Wauthle R, Xie Q, Kruth JP, Humbeeck JV (2013) Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum. Acta Mater 61:4657–4668

    Article  CAS  Google Scholar 

  282. Sungail C, Abid AD (2020) Additive manufacturing of tantalum—a study of chemical and physical properties of printed tantalum. Met Powder Rep 75:28–33

    Article  Google Scholar 

  283. Zelaia PF, Ledford C, Ellis EAI, Campbell Q, Rossy AM, Leonard DN, Kirka MM (2021) Crystallographic texture evolution in electron beam melting additive manufacturing of pure Molybdenum. Mater Design 207:109809

    Article  CAS  Google Scholar 

  284. Wang D, Yu C, Ma J (2017) Densification and crack suppression in selective laser melting of pure Mo. Mater Des 129:44–52

    Article  CAS  Google Scholar 

  285. Guo Z, Wang L, Wang XZ (2021) Additive manufacturing of W-12Ta (wt%) alloy: Processing and resulting mechanical properties. J Alloys Compd 868:159193

    Article  CAS  Google Scholar 

  286. Gu DD, Shen YF (2009) Effects of processing parameters on consolidation and microsturcutre of W-Cu components by DMLS. J Alloy Compd 473(1/2):107–115

    Article  CAS  Google Scholar 

  287. Mireles OR, Rodriguez O, Gao Y, Philps N (2020) Additive manufacture of refractory alloy C103 for propulsion applications. In: AIAA Propulsion and Energy Forum, p 3500

  288. Guo Y, Jia L, Sun S, Kong B, Liu J, Zhang H (2016) Rapid fabrication of Nb-Si based alloy by selective laser melting: microstructure, hardness and initial oxidation behavior. Mater Des 109:37–46

    Article  CAS  Google Scholar 

  289. Guo Y, Jia L, Kong B, Zhang F, Liu J, Zhan H (2017) Improvement in the oxidation resistance of Nb-Si based alloy by selective laser melting. Corros Sci 127:260–269

    Article  CAS  Google Scholar 

  290. Mathias S, Srinivasan D, Raghavendra S, Jayaprakash KN, Ahmed S, Banerjee D (2021) Additive processing of a X22CrMoV12-1 steel: structure, properties and product. Trans Indian Natl Acad Eng Springer 6:283–295

    Article  Google Scholar 

  291. Additive Manufacturing of NASA HR-1 Material for Liquid Rocket Engine Component Applications (2021). https://ntrs.nasa.gov/citations/20200001007. Accessed 1 Dec 2021

  292. Gradl PR, Protz CS (2020) Technology advancements for channel wall nozzle manufacturing in liquid rocket engines. Astra Astronautica 174:148–158

    Article  CAS  Google Scholar 

  293. Günther J, Brenne F, Droste M, Wendler M, Volkova O, Biermann H, Niendorf T (2018) Design of novel materials for additive manufacturing—Isotropic microstructure and high defect tolerance. Sci Rep 8:1298

    Article  CAS  Google Scholar 

  294. Papula S, Song M, Pateras A, Chen XB, Brandt M, Easton M, Yagodzinskyy Y, Virkkunen I, Hänninen H (2019) Selective laser melting of duplex stainless steel 2205: effect of post-processing heat treatment on microstructure. Mech Prop Corros Resist Mater 12(15):2468

    CAS  Google Scholar 

  295. Saeidi K, Alvi S, Lofaj F, Petkov VI, Akhtar F (2019) Advanced mechanical strength in post heat treated SLM 2507 at room and high temperature promoted by hard/ductile sigma precipitates. Metals 9(2):199

    Article  CAS  Google Scholar 

  296. Hosseini VA, Högström M, Hurtig K, Bermejo MAV, Stridh LE, Karlsson L (2019) Wire-arc additive manufacturing of a duplex stainless steel: thermal cycle analysis and microstructure characterization. Weld World 63:975–987

    Article  CAS  Google Scholar 

  297. Lervåg M, Sørensen C, Robertstad A, Brønstad BM, Nyhus B, Eriksson M, Aune R, Ren X, Akselsen OM, Bunaziv I (2020) Additive manufacturing with super duplex stainless steel wire by CMT process. Metals 10(2):2722020

    Article  CAS  Google Scholar 

  298. Davidson KP, Singamneni SB (2017) Metallographic evaluation of duplex stainless-steel powders processed by selective laser melting. Rapid Prototyp J 23(6):1355–2546

    Article  Google Scholar 

  299. Davidson K, Singamneni S (2016) Selective laser melting of duplex stainless-steel powders: an investigation. Mater Manuf Processes 31:1543–1555

    Article  CAS  Google Scholar 

  300. Silbernagel C, Gargalis L, Ashcroft I, Hague R, Galea M, Dickens P (2019) Electrical resistivity of pure copper processed by medium-powered laser powder bed fusion additive manufacturing for use in electromagnetic applications. Addit Manuf 29:100831

    CAS  Google Scholar 

  301. Jadhav SD, Goossens LR, Kinds Y, Hooreweder BV, Vanmeensel K (2021) Laser-based powder bed fusion additive manufacturing of pure copper. Addit Manuf 42:101990

    CAS  Google Scholar 

  302. Tiberto D, Klotz UE, Held F, Wolf G (2019) Additive manufacturing of copper alloys: influence of process parameters and alloying elements. Mater Sci Technol 35(8):969–977

    Article  CAS  Google Scholar 

  303. Constantin L, Wu Z, Lia N, Fan L, Silvain JF, Lu YF (2020) Laser 3D printing of complex copper structures. Addit Manuf 35:101268

    CAS  Google Scholar 

  304. Jadhav SD, Dadbakhsh S, Goossens L, Kruth JP, Humbeeck JV, Vanmeensel K (2019) Influence of selective laser melting process parameters on texture evolution in pure copper. J Mater Process Technol 270:47–58

    Article  CAS  Google Scholar 

  305. Chen Y, Ren S, Zhao Y, Qu X (2019) Microstructure and properties of CuCr alloy manufactured by selective laser melting. J Alloy Compd 786:189–197

    Article  CAS  Google Scholar 

  306. Zhang S, Zhu H, Zhang L, Zhang W, Yang H, Zeng X (2019) Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting. Mater Lett 237:306–309

    Article  CAS  Google Scholar 

  307. Jahns K, Bappert R, Bohlke P, Krupp U (2020) Additive manufacturing of CuCr1Zr by development of a gas atomization and laser powder bed fusion routine. Int Adv Manuf Technol 107:2151–2161

    Article  Google Scholar 

  308. Wallis C, Buchmayr B (2019) Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusion. Mater Sci Eng A 744:215–223

    Article  CAS  Google Scholar 

  309. Ordás N, Portolés L, Azpeleta M, Gómez A, Blasco JR, Martinez M, Ureña J, Iturriza I (2021) Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF). J Nucl Mater 548:152841

    Article  CAS  Google Scholar 

  310. Bai Y, Zhao C, Zhang Y, Chen J, Wang H (2021) Additively manufactured CuCrZr alloy: microstructure, mechanical properties and machinability. Mater Sci Eng A 819:1415282

    Article  CAS  Google Scholar 

  311. Mao Z, Zhang DZ, Jiang J, Fu G, Zhang P (2018) Processing optimization, mechanical properties and microstructural evolution during selective laser melting of Cu-15Sn high-tin bronze. Mater Sci Eng A 721:125–134

    Article  CAS  Google Scholar 

  312. Wang Y, Chen X, Konovalov S, Su C, Siddiquee AN, Gangil N (2019) In-situ wire-feed additive manufacturing of Cu-Al alloy by addition of silicon. Appl Surf Sci 487:1366–1375

    Article  CAS  Google Scholar 

  313. Jadhav SD, Dhekne PP, Dadbakhsh S, Kruth JP, Humbeeck JV, Vanmeensel K (2020) Surface modified copper alloy powder for reliable laser-based additive manufacturing. Addit Manuf 35:101418

    CAS  Google Scholar 

  314. Zhang S, Zhu H, Zhang L, Zhang W, Yang H, Zeng X (2019) Microstructure and properties in QCr0.8 alloy produced by selective laser melting with different heat treatment. J Alloy Compd 800:286–293

    Article  CAS  Google Scholar 

  315. Zhou Y, Zeng X, Yang Z, Wu H (2018) Effect of crystallographic textures on thermal anisotropy of selective laser melted Cu-2.4Ni-0.7Si alloy. J Alloy Compd 743:258–261

    Article  CAS  Google Scholar 

  316. Gradl PR, Protz C, Cooper K, Ellis CGD, Evans L (2019) GRCop-42 Development and Hot-fire Testing Using Additive Manufacturing Powder Bed Fusion for Channel-Cooled Combustion Chambers. In: AIAA Propulsion and Energy 2019 Forum

  317. Gradl PR, Protz C, Zagorski K, Doshi V, McCallum H (2019) Additive Manufacturing and Hot-fire Testing of Bimetallic GRCop-84 and C-18150 Channel-Cooled Combustion Chambers using Powder Bed Fusion and Inconel 625 Hybrid Directed Energy Deposition. In: AIAA Propulsion and Energy 2019 Forum

  318. Agrawal P, Thapliyal S, Nene SS, Mishra RS, McWilliams BA, Cho KC (2020) Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing. Addit Manuf 32:101098

    CAS  Google Scholar 

  319. Zhou PF, Xiao DH, Wu Z, Ou XQ (2019) Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders. Mater Sci Eng A 739:86–89

    Article  CAS  Google Scholar 

  320. Yang X, Zhou Y, Xi S, Chen Z, Wei P, He C, Li T, Gao Y, Wu H (2019) Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility. Mater Sci Eng A 767:138394

    Article  CAS  Google Scholar 

  321. Tong Z, Ren X, Jiao J, Zhou W, Ren Y, Ye Y, Larson EA, Gu J (2019) Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: effect of heat treatment on microstructure, residual stress and mechanical property. J Alloy Compd 785:1144–1159

    Article  CAS  Google Scholar 

  322. Lin D, Xu L, Jing H, Han Y, Zhao L, Zhang Y, Li H (2020) A strong, ductile, high-entropy FeCoCrNi alloy with fine grains fabricated via additive manufacturing and a single cold deformation and annealing cycle. Addit Manuf 36:101591

    CAS  Google Scholar 

  323. Xu Z, Zhu Z, Wang P, Meenashisundaram GK, Nai SML, Wei J (2020) Fabrication of porous CoCrFeMnNi high entropy alloy using binder jetting additive manufacturing. Addit Manuf 35:101441

    CAS  Google Scholar 

  324. Wang H, Zhu ZG, Chen H, Wang AG, Liu JQ, Liu HW, Zheng RK, Nai SML, Primig S, Babu SS, Ringer SP, Liao XZ (2020) Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting. Acta Mater 196:609–625

    Article  CAS  Google Scholar 

  325. Karlsson D, Lindwall G, Lundbäck A, Amnebrink M, Boström M, Riekehr L, Schuisky M, Sahlberg M, Jansson U (2019) Binder jetting of the AlCoCrFeNi alloy. Addit Manuf 27:72–79

    CAS  Google Scholar 

  326. Mahbooba Z, Thorsson L, Unosson M, Skoglund P, West H, Horn T, Rock C, Vogli E, Harrysson O (2018) Additive manufacturing of an iron-based bulk metallic glass larger than the critical casting thickness. Appl Mater Today 11:264–269

    Article  Google Scholar 

  327. Luo N, Scheitler C, Ciftci N, Galgon F, Fu Z, Uhlenwinkel V, Schmidt M, Körner C (2020) Preparation of Fe-Co-B-Si-Nb bulk metallic glasses by laser powder bed fusion: microstructure and properties. Mater Charact 162:110206

    Article  CAS  Google Scholar 

  328. Li XP, Roberts MP, O’Keeffe S, Sercombe TB (2016) Selective laser melting of Zr-based bulk metallic glasses: processing, microstructure and mechanical properties. Mater Des 112:217–226

    Article  CAS  Google Scholar 

  329. https://3dprintingindustry.com/news/wohlers-associates-publishes-2021-annual-state-of-3d-printing-report-186439/. Accessed 5 Feb 2022

  330. https://www.abiresearch.com/press/moving-beyond-roi-total-lifetime-value-new-metric-matters-additive-manufacturing/. Accessed 5 Feb 2022

Download references

Acknowledgements

The authors would like to acknowledge Pratt & Whitney for approval for the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheepa Srinivasan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, D., Ananth, K. Recent Advances in Alloy Development for Metal Additive Manufacturing in Gas Turbine/Aerospace Applications: A Review. J Indian Inst Sci 102, 311–349 (2022). https://doi.org/10.1007/s41745-022-00290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-022-00290-4

Keywords

Navigation