Skip to main content

Advertisement

Log in

Trend Analyses Methodologies in Hydro-meteorological Records

  • Review Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

In recent years, global warming and climate change impacts on hydro-meteorological variables and water resources triggered extensive focus on trend analyses. Especially, in historical records and climate change model scenario projections, trend feature searches help for better predictions prior to mitigation and adaptation activities. Each trend identification technique has a set of restrictive assumptions and limitations, but they are not cared for by many researchers. The major problem with trend research is that the researchers do not care for the basic assumptions of any methodology but use ready software to solve their problems. Among these assumptions, the most significant ones are the normal (Gaussian) probability distribution function (PDF) and serially independent structure of a given time series. It is the main objective of this review paper to present each trend identification methodology including classical ones with the new alternatives so that any researcher in need of trend analysis can have concise and clear interpretations for the choice of the most convenient trend method. In general, parametric, non-parametric, classical and innovative trend methods are explained comparatively including the linear regression, Mann–Kendall (MK) trend test with Sen slope estimation, Spearman’s rho, innovative trend analysis (ITA), partial trend analysis (PTA) and crossing trend analysis (CTA). Pros and cons are given for each methodology. In addition, for improvement of serial independence requirement of the classical trend analyses, methods are introduced briefly by pre- and over-whitening processes. Finally, a set of recommendations is suggested for future research possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 21

Similar content being viewed by others

References

  • Alexandresson H, Moberg A (1997) Homogenization of Swedish temperature data. Part I: homogeneity test for linear trends. Int J Climatol 17:25–34

    Google Scholar 

  • Almazroui M, Şen Z, Mohorji AM et al (2018) Impacts of climate change on water engineering structures in arid regions: case studies in Turkey and Saudi Arabia. Earth Syst Environ 3(1):1–15

    Google Scholar 

  • Anderson RL (1942) Distribution of the serial correlation coefficient. Ann Math Stat 13(1):1–13

    Google Scholar 

  • Bao Z et al (2012) Sensitivity of hydrological variables to climate change in the Haihe River basin, China. Hydrol Process 26(15):2294–2306

    Google Scholar 

  • Bates BC, Kundzewicz Z, Wu WS, Palutikof J (2008) Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva

    Google Scholar 

  • Bayazit M, Önöz B (2007) To pre-whiten or not to pre-whiten in trend analysis? Hydrol Sci J 52:611–624

    Google Scholar 

  • Blain GC (2012) Monthly values of the standardized precipitation index in the State of São Paulo, Brazil: trends and spectral features under the normality assumption. Bragantia 71(1):122–131

    Google Scholar 

  • Bradley JV (1968) Distribution-free statistical tests. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Burn DH, Hag Elnur MA (2002) Detection of hydrologic trends and variability. J Hydrol 255:107–122

    Google Scholar 

  • Cailas MD, Cavadias G, Gehr R (1986) Application of a non-parametric approach for monitoring and detecting trends in water quality data of the St. Lawrence River. Water Pollut Res J Can 21(2):153–167

    Google Scholar 

  • Chandler R, Scott M (2011) Statistical methods for trend detection and analysis in the environmental sciences. Wiley, New York

    Google Scholar 

  • Coggin TD (2012) Using econometric methods for trends in the HadCRUT3 global and hemispheric data. Int J Climate 32:315–320

    Google Scholar 

  • Cox DR, Miller HD (1965) The theory of stochastic process. Methuen, London

    Google Scholar 

  • Daniel WW (1990) Spearman rank correlation coefficient. Applied nonparametric statistics, 2nd edn. PWS-Kent, Boston, pp 358–365

    Google Scholar 

  • Demaree GR, Nicolis C (1990) Onset of Sahelian drought viewed as a fluctuation-induced transition. Q J R Meteorol Soc 116:221–238

    Google Scholar 

  • Douglas EM, Fairbank CA (2011) Is precipitation in Northern New England becoming more extreme? Statistical analysis of extreme rainfall in Massachusetts, New Hampshire, and Maine and updated estimates of the 100-year storm. J Hydrol Eng. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000303

    Article  Google Scholar 

  • Douglas EM, Vogel RM, Kroll CN (2000) Trends in floods and low flows in the United States: impact of spatial correlation. J Hydrol 240:90–105

    Google Scholar 

  • Ehsanzadeh E, Ouarda TBMJ, Saley HM (2011) A simultaneous analysis of gradual and abrupt changes in Canadian low streamflows. Hydrol Processes 25(5):727–739

    Google Scholar 

  • Emanuel K (2005) Are there trends in hurricane destruction? Nature 436:686–688

    Google Scholar 

  • Fatichi S, Ivanov VY, Caporali E (2013) Assessment of a stochastic downscaling methodology in generating an ensemble of hourly future climate time series. Climate Dyn 40:1841–1861

    Google Scholar 

  • Feller W (1967) An introduction to probability theory and its applications, vol II. Wiley, New York, p 626

    Google Scholar 

  • Forsee WJ, Ahmad S (2011) Estimating urban storm water infrastructure design in response to projected climate change. J Hydrol Eng 16(11):865–873

    Google Scholar 

  • Gan TY (1998) Hydro-climatic trends and possible climatic warming in the Canadian prairies. Water Resour Res 34(11):3009–3015

    Google Scholar 

  • Garbrecht J, Van Liew M, Brown GO (2004) Trends in precipitation, streamflow, and evapotranspiration in the Great Plains of the United States. J Hydrol Eng. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:5(360)

    Article  Google Scholar 

  • Gupta A (2007) Large rivers: geomorphology and management. Wiley, Chichester

    Google Scholar 

  • Haktanir T, Citakoglu H (2014) Trend, independence, stationarity, and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey. J Hydrol Eng 19(9):05014009

    Google Scholar 

  • Hamed KH (2009) Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. J Hydrol 368:143–155

    Google Scholar 

  • Hamed KH, Rao AR (1998) A modified Mann–Kendall trend test for auto-correlated data. J Hydrol 204:182–196

    Google Scholar 

  • Hamilton JP, Whitelaw GS, Fenech A (2001) Mean annual temperature and annual precipitation trends at Canadian biosphere reserves. Environ Monit Assess 67:239–275

    Google Scholar 

  • Han J, Huang G, Zhang H, Li Z, Li Y (2014) Heterogeneous Precipitation and Streamflow Trends in the Xiangxi River Watershed, 1961–2010. J Hydrol Eng 19(6):1247–1258

    Google Scholar 

  • Hannaford J, Marsh T (2006) An assessment of trends in UK runoff and low flows using a network of undisturbed catchments. Int J Climatol 26(9):1237–1253

    Google Scholar 

  • Helsel DR, Hirsch RM (1992) Statistical methods in water resources: studies in environmental science 49. Geological Survey Water Resources Division, Reston. Elvesier, New York

    Google Scholar 

  • Hipel KW, McLeod AI, Weiler RR (1988) Data analysis of water quality time series in Lake Erie. Water Resour Bull 24(3):533–544

    Google Scholar 

  • Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality analysis. Water Resource Res 18(1):107–121

    Google Scholar 

  • Hirsh RM, Slack JR (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20(6):727–732

    Google Scholar 

  • IPCC (2007) Working group II contribution to the intergovernmental panel on climate change fourth assessment report climate change 2007: climate change impacts, adaptation and vulnerability, pp 9–10

  • IPCC (2014) Climate change: synthesis report. An assessment of intergovernmental panel on climate change. IPCC, Geneva. http://ipcc.ch/index.html

  • Johnston M (1989). Involving the public. In: Hibberd BG (ed) Urban forestry practice. Forestry Commission Handbook 5. HMSO, pp 26–34

  • Kalra A, Piechota TC, Davies R, Tootle GA (2008) Changes in U.S. streamflow and western U.S. snowpack. J Hydrol Eng 13:156–163

    Google Scholar 

  • Karpouzos DK, Kavalieratou S, Babajimopoulos C (2008) Trend analysis in hydro-meteorological data. Technical Report No. 5.4, MEDDMAN, Interreg III B—MEDOCC, Thessaloniki

  • Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London

    Google Scholar 

  • Koenker R (2004) Quantile regression for longitudinal data. Int Multi Anal 92:78–89

    Google Scholar 

  • Koutsoyiannis D (2003) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol Sci J 48:3–24

    Google Scholar 

  • Koutsoyiannis D, Montanari A (2007) Statistical analysis of hydroclimatic time series: uncertainty and insights. Water Resour Res 43(5):W05429. https://doi.org/10.1029/2006WR005592

    Article  Google Scholar 

  • Krauskopf KB (1968) A tale of ten plutons. Bull Geol Soc Am 79:1–18

    Google Scholar 

  • Larsen J, Ussing L, Brunø T (2013) Trend-analysis and research direction in construction management literature. ICCREM 2013:73–82

    Google Scholar 

  • Leopold LB, Langbein WB (1963) Association and indeterminacy in geomorphology. In: The fabric of geology, pp 184–192

  • Lins HF, Slack JR (1999) Streamflow trends in the United States. Geophys Res Lett 26(2):227–230

    Google Scholar 

  • Lorenzo-Lacruz J, Vicente-Serrano SM, Lopez-Moreno JI, Moran-Tejeda E, Zabalza J (2012) Recent trends in Iberian streamflows (1945–2005). J Hydrol 414–415:463–475

    Google Scholar 

  • Luo Y, Liu S, Fu SF, Liu J, Wang G, Ahou G (2008) Trend of precipitation in Beijing River Basin, Guangdong Province, China. Hydrol Process 27:2377–2386

    Google Scholar 

  • Maass A, Hufschmidt MM, Dorfman R, Thomas HA Jr, Marglin SA, Fair GM (1962) Design of water resources systems. Harvard University Press, Cambridge

    Google Scholar 

  • Mallakpour I, Villarini G (2016) Investigating the relationship between the frequency of flooding over the central United States and large-scale climate. Adv Water Resour 92:159–171

    Google Scholar 

  • Mann HB (1945) Non-parametric test against trend. Econometrica 13:245–259

    Google Scholar 

  • Mann CJ (1970) Randomness in nature. Bull Geol Soc Am 81:95–104

    Google Scholar 

  • Mastrandrea M et al (2011) The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups. Clim Change 108:675–691

    Google Scholar 

  • Matalas NC, Sankarasubramanian A (2003) Effect of persistence on trend detection via regression. Water Resour Res 39(12):WR002292

    Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319(5863):573–574

    Google Scholar 

  • Mohorji AM, Şen Z, Almazroui M (2017) Trend analyses revision and global monthly temperature innovative multi-duration analysis. Earth Syst Environ 1:9

    Google Scholar 

  • Nalley D, Adamowski J, Khalil B, Ozga-Zielinski B (2013) Trend detection in surface temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transforms. Atmos Res 132:375–398

    Google Scholar 

  • Önöz B, Bayazit M (2011) Block bootstrap for Mann–Kendall trend test of serially dependent data. Hydrol Process 26:1–19

    Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126–135

    Google Scholar 

  • Pielke RA Jr, Landsea CW (1998) Normalized hurricane damages in the United States: 1925–95. Weather Forecast 13:621–631

    Google Scholar 

  • Popper K (1957) The poverty of historicism. Routledge and Kegan Paul, London

    Google Scholar 

  • Qaiser K, Ahmad S, Johnson W, Batista J (2011) Evaluating the impact of water conservation on fate of outdoor water use: a study in an arid region. J Environ Manag 98(8):2061–2068

    Google Scholar 

  • Rivard C, Vigneault H (2009) Trend detection in hydrological series: when series are negatively correlated. Hydrol Process 23(19):2737–2743

    Google Scholar 

  • Rivard C, Vigneault H, Piggott AR, Larocque M, Anctil F (2009) Groundwater recharge trends in Canada. Can J Earth Sci 46:841–854

    Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389

    Google Scholar 

  • Şen Z (1977) Autorun analysis of hydrologic time series. J Hydrol 36:75–85

    Google Scholar 

  • Şen Z (1991) Probabilistic modelling of crossing in small samples and application of runs to hydrology. J Hydrol 124(3–4):345–362

    Google Scholar 

  • Şen Z (2012) Innovative trend analysis methodology. J Hydrol Eng ASCE 17(9):1042–1046

    Google Scholar 

  • Şen Z (2014) Trend identification simulation and application. J Hydrol Eng ACSE 19(3):635–642

    Google Scholar 

  • Şen Z (2016) Hydrological trend analysis with innovative and over-whitening procedures. Hydrol Sci J 62(2):294–305

    Google Scholar 

  • Şen Z (2017a) Innovative trend methodologies in science and engineering. Springer, Heidelberg

    Google Scholar 

  • Şen Z (2017b) Innovative trend significance test and applications. Theor Appl Climatol 127:939–947

    Google Scholar 

  • Şen Z (2018) Crossing trend analysis methodology and application for Turkish rainfall records. Theor Appl Climatol 131:285–293

    Google Scholar 

  • Şen Z (2019) Partial trend identification by change-point successive average methodology (SAM). J Hydrol 571:288–299

    Google Scholar 

  • Serinaldi F, Kilsby CG, Lombardo F (2018) Untenable non-stationarity: an assessment of the fitness for purpose of trend tests in hydrology. Adv Water Resour 111:132–155

    Google Scholar 

  • Sonali P, Kumar D (2013) Review of trend detection methods and their application to detect temperature changes in India. J Hydrol 476:212–227

    Google Scholar 

  • Spearman C (1904) The proof and measurement of association between two things. In: Sharif M, Archer D, Hamid A (eds) Trends in streamflow magnitude and timings in Satluj River Basin. World Environmental and Water Resources Congress 2012, pp 2013–2021

  • Taylor CH, Loftis JC (1989) Testing for trend in lake and groundwater quality time series. Water Resour Bull 25(4):715–726

    Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis, 1,2, and 3: Ned. Akad Wentsch Proc 53, 386–392, 521–525, and 1397–1412

  • Thomas BF, Timothy JV (2002) The applications of size robust trend statistics to global-warming temperature series. J Climate 15:117–123

    Google Scholar 

  • von Storch H (1995) Misuses of statistical analysis in climate research. In: Storch HV, Navarra A (eds) Analysis of climate variability: applications of statistical techniques. Springer, New York, pp 11–26

    Google Scholar 

  • Von Storch H, Navarra A (1995) Analysis of climate variability: applications of statistical techniques. Springer, Berlin

    Google Scholar 

  • Wagesho N, Goel NK, Jain MK (2012) Investigation of non-stationarity in hydro-climatic variables at Rift Valley lakes basin of Ethiopia. J Hydrol 444:113–133

    Google Scholar 

  • Wang W, Chen Y, Becker S, Liu B (2015) Variance correction prewhitening method for trend detection in autocorrelated data. J Hydrol Eng 20(12):04015033

    Google Scholar 

  • Wayne AW, Gray HL (1995) Selecting a model for detecting the presence of a trend. J Climate 8:1929–1937

    Google Scholar 

  • Wilcox RR (2001) Fundamentals of modern statistical methods: Substantially improving power and accuracy. Springer, New York

    Google Scholar 

  • Yu YS, Zou S, Whittemore D (1993) Non-parametric trend analysis of water quality data of river in Kansas. J Hydrol 150:61–80

    Google Scholar 

  • Yue S, Pilon PA (2004) Comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection. Hydrol Sci J 49:53–57

    Google Scholar 

  • Yue S, Wang CY (2002) Applicability of prewhitening to eliminate the influence of serial correlation on the Mann–Kendall test. Water Resour Res 38(6):41–47

    Google Scholar 

  • Yue S, Wang CY (2004) The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18:201–218

    Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002a) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Processes 16:1807–1829

    Google Scholar 

  • Yue S, Pilon P, Cavadias G (2002) Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271

    Google Scholar 

  • Yue S, Pilon PJ, Phinney B, Cavadias G (2002b) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829

    Google Scholar 

  • Zhang Q, Wang YP, Pitman AJ, Dai YJ (2011) Limitations of nitrogen and phosphorous on the terrestrial carbon uptake in the 20th century. Geophys Res Lett 38:L22701. https://doi.org/10.1029/2011GL049244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zekâi Şen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

In the following table, time series with 100 data are given and the regression trend analysis details are given numerically similar to Table 1 in the text. The necassary arithmetic mean values are given in tlast row in bold.

t

v

tv

t2

t

v

tv

t2

1

16.7008

16.7008

1

51

17.0601

870.065

2601

2

13.2639

26.5278

4

52

15.9999

831.995

2704

3

15.2602

45.7806

9

53

15.9905

847.497

2809

4

13.9909

55.9636

16

54

14.4837

782.12

2916

5

15.707

78.535

25

55

18.1374

997.557

3025

6

13.9193

83.5158

36

56

15.8536

887.802

3136

7

16.1199

112.839

49

57

14.7109

838.521

3249

8

16.6387

133.11

64

58

18.8628

1094.04

3364

9

18.6038

167.434

81

59

15.7305

928.1

3481

10

14.8118

148.118

100

60

15.0219

901.314

3600

11

10.9433

120.376

121

61

15.6325

953.583

3721

12

13.5608

162.73

144

62

14.5441

901.734

3844

13

17.9692

233.6

169

63

14.0197

883.241

3969

14

13.1357

183.9

196

64

21.332

1365.25

4096

15

17.2219

258.329

225

65

19.611

1274.72

4225

16

15.5681

249.09

256

66

16.9351

1117.72

4356

17

18.2134

309.628

289

67

13.8258

926.329

4489

18

11.4382

205.888

324

68

14.6291

994.779

4624

19

14.9846

284.707

361

69

16.0269

1105.86

4761

20

12.9843

259.686

400

70

17.9828

1258.8

4900

21

21.236

445.956

441

71

13.756

976.676

5041

22

17.0904

375.989

484

72

11.7803

848.182

5184

23

18.2179

419.012

529

73

13.5618

990.011

5329

24

13.3636

320.726

576

74

17.147

1268.88

5476

25

14.5628

364.07

625

75

17.2827

1296.2

5625

26

14.9751

389.353

676

76

17.4234

1324.18

5776

27

17.7368

478.894

729

77

16.2794

1253.51

5929

28

15.0043

420.12

784

78

16.9274

1320.34

6084

29

16.9831

492.51

841

79

15.6277

1234.59

6241

30

11.4964

344.892

900

80

18.324

1465.92

6400

31

14.9123

462.281

961

81

13.8966

1125.62

6561

32

13.9928

447.77

1024

82

17.5501

1439.11

6724

33

12.5059

412.695

1089

83

14.9626

1241.9

6889

34

16.6959

567.661

1156

84

16.0102

1344.86

7056

35

16.264

569.24

1225

85

17.8056

1513.48

7225

36

15.787

568.332

1296

86

18.7982

1616.65

7396

37

13.0726

483.686

1369

87

14.5047

1261.91

7569

38

18.015

684.57

1444

88

19.2813

1696.75

7744

39

16.4804

642.736

1521

89

18.1003

1610.93

7921

40

15.2019

608.076

1600

90

16.6643

1499.79

8100

41

15.8658

650.498

1681

91

16.4296

1495.09

8281

42

15.316

643.272

1764

92

16.4048

1509.24

8464

43

12.3596

531.463

1849

93

16.2538

1511.6

8649

44

15.3087

673.583

1936

94

16.9261

1591.05

8836

45

14.2373

640.679

2025

95

17.0026

1615.25

9025

46

13.9616

642.234

2116

96

18.5721

1782.92

9216

47

13.6272

640.478

2209

97

19.994

1939.42

9409

48

14.8929

714.859

2304

98

17.8938

1753.59

9604

49

11.9747

586.76

2401

99

16.5606

1639.5

9801

50

17.9285

896.425

2500

100

18.2504

1825.04

10,000

   

Means

25.5

15.202

385.11

858.5

The substitution of the mean values into Eqs. (3) and (4) yields the slope of the regression line as 0.022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almazroui, M., Şen, Z. Trend Analyses Methodologies in Hydro-meteorological Records. Earth Syst Environ 4, 713–738 (2020). https://doi.org/10.1007/s41748-020-00190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-020-00190-6

Keywords

Navigation