Skip to main content
Log in

Slag corrosion characteristics of MgO-based refractories under vacuum electromagnetic field

  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

MgO-based refractories have been widely used in metallurgical processes. However, their service lives are limited by the corrosion and penetration effects of the molten slag. To figure out the slag resistance of various MgO-based refractories, MgO–MgAl2O4, MgO–CaO, and MgO–C refractories were chosen in this work, and their slag corrosion characteristics under vacuum electromagnetic fields were investigated using the static crucible method at 1873 K. Furthermore, the corroded interfaces of refractories were analyzed by x-ray diffractometer (XRD), scanning electron microscope (SEM), and energy dispersive spectrometer (EDS). It was found that in CaO–Al2O3–SiO2–MgO slag system, the refractories displayed different slag corrosion resistance, and their corrosion depths ranged from 3 to 10 mm. The corrosion depths of MgO–CaO refractories were more than 10 mm, which showed the worst slag resistance performance. Among them, MgO–C refractories were hardly corroded by the molten slag and its corrosion depth was less than 3 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arianpour, A.Ç., Turan, S.: Effect of calcination on the production of sintered MgAl2O4 by using different local waste Al2O3 powders. J Aust Ceram Soc. 53, 975–983 (2017)

    Article  CAS  Google Scholar 

  2. Sako, E.Y., Braulio, M.A.L., Zinngrebe, E., Laan, S.R.V.D., Pandolfelli, V.C.: Fundamentals and applications on in situ spinel formation mechanisms in Al2O3–MgO refractory castables. Ceram Int. 38, 2243–2251 (2012)

    Article  CAS  Google Scholar 

  3. Santos, T., Luz, A.P., Pagliosa, C., Pandolfelli, V.C.: Mg(OH)2 nucleation and growth parameters applicable for the development of MgO-based refractory castables. J Am Ceram Soc. 99, 461–469 (2016)

    Article  CAS  Google Scholar 

  4. Zou, Y., Gu, H.Z., Huang, A.: Slag corrosion mechanism of lightweight Al2O3–MgO castable in different atmospheric conditions. J Am Ceram Soc. 101, 2029–2016 (2017)

    Google Scholar 

  5. Huang, A., Lian, P., Fu, L., Gu, H., Zou, Y.: Modeling and experiment of slag corrosion on the lightweight alumina refractory with static magnetic field facing green metallurgy. J Min Metall, Sect B. 54, 143–151 (2018)

    Article  CAS  Google Scholar 

  6. Goto, K., Argent, B.B., Lee, W.E.: Corrosion of MgO–MgAl2O4 spinel refractory bricks by calcium aluminosilicate slag. J Am Ceram Soc. 80, 461–471 (1997)

    Article  CAS  Google Scholar 

  7. Gokce, A.S., Gurcan, C., Ozgen, S., Aydin, S.: The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks. Ceram Int. 34, 323–330 (2008)

    Article  CAS  Google Scholar 

  8. Dai, Y.J., Gruber, D., Harmuth, H.: Observation and quantification of the fracture process zone for two magnesia refractories with different brittleness. J Eur Ceram Soc. 37, 2521–2529 (2017)

    Article  CAS  Google Scholar 

  9. Koryttseva, A., Navrotsky, A.: High-temperature calorimetric study of oxide component dissolution in a CaO–MgO–Al2O3–SiO2 slag at 1450 °C. J Am Ceram Soc. 100, 1172–1177 (2017)

    Article  CAS  Google Scholar 

  10. Muñoz, V., Camelli, S., Martinez, A.G.T.: Slag corrosion of alumina-magnesia-carbon refractory bricks: experimental data and thermodynamic simulation. Ceram Int. 43, 4562–4569 (2017)

    Article  Google Scholar 

  11. Kasimagwa, I., Brabie, V., Jönsson, P.G.: Slag corrosion of MgO–C refractories during secondary steel refining. Ironmak Steelmak. 41, 121–131 (2014)

    Article  CAS  Google Scholar 

  12. Luz, A.P., Leite, F.C., Brito, M.A.M., Pandolfelli, V.C.: Slag conditioning effects on MgO–C refractory corrosion performance. Ceram Int. 39, 7507–7515 (2013)

    Article  CAS  Google Scholar 

  13. Liu, Y.B., Sun, Q.J., Liu, J.P., Wang, S.J., Feng, J.C.: Effect of axial external magnetic field on cold metal transfer welds of aluminum alloy and stainless steel. Mater Lett. 152, 29–31 (2015)

    Article  CAS  Google Scholar 

  14. Wang, H.M., Li, G.R., Ren, Z.M., Zhao, Y.T.: Effect of exciting current of high frequency electromagnetic field on initial solidification of steel during electromagnetic continuous casting. Ironmak Steelmak. 36, 615–622 (2009)

    Article  CAS  Google Scholar 

  15. Zhao, Z., Chai, Y.Q., Zheng, S.H., Wang, L.S., Xiao, Y.P.: Electromagnetic field assisted metallic materials processing: a review. Steel Res Int. 88, 1–11 (2017)

    CAS  Google Scholar 

  16. Li, X.C., Zhu, B.Q., Wang, T.X.: Effect of electromagnetic field on slag corrosion resistance of low carbon MgO–C refractories. Ceram Int. 38, 2105–2109 (2012)

    Article  CAS  Google Scholar 

  17. Li, X.C., Zhu, B.Q., Wang, T.X.: Electromagnetic field effects on the formation of MgO dense layer in low carbon MgO–C refractories. Ceram Int. 38, 2883–2887 (2012)

    Article  CAS  Google Scholar 

  18. Ren, X.M., Ma, B.Y., Zhang, Y.R., Zhu, Q., Li, D.X., Li, S.M., Yuan, L., Yu, J.K., Liu, G.Q., Li, H.X.: Effects of sintering temperature and V2O5 additive on the properties of SiC–Al2O3 ceramic foams. J Alloys Compd. 732, 716–724 (2018)

    Article  CAS  Google Scholar 

  19. Torre, Á.G.D.I., Valle, F.J., Aza, A.H.D.: Direct mineralogical composition of a MgO–C refractory material obtained by Rietveld methodology. J Eur Ceram Soc. 26, 2587–2592 (2006)

    Article  Google Scholar 

  20. Bag, M., Adak, S., Sarkar, R.: Study on low carbon containing MgO–C refractory: use of nano carbon. Ceram Int. 38, 2339–2346 (2012)

    Article  CAS  Google Scholar 

  21. Bag, M., Adak, S., Sarkar, R.: Nano carbon containing MgO–C refractory: effect of graphite content. Ceram Int. 38, 4909–4914 (2012)

    Article  CAS  Google Scholar 

  22. Chen, Z.Y.: Chemical thermodynamics of refractories. Metallurgical industry press, Peking (2005)

    Google Scholar 

  23. Zhu, T.B., Li, Y.W., Sang, S.B., Jin, S.L., Wang, H.: Formation of hollow MgO-rich spinel whiskers in low carbon MgO–C refractories with Al additives. J Eur Ceram Soc. 34, 4425–4432 (2014)

    Article  CAS  Google Scholar 

  24. Bahtli, T., Aksel, C., Kavas, T.: Corrosion behavior of MgO–MgAl2O4–FeAl2O4 composite refractory materials. J Aust Ceram Soc. 53, 1–8 (2017)

    Article  Google Scholar 

  25. Vázquez, B.A., Pena, P., Aza, A.H.D., Sainz, M.A., Caballero, A.: Corrosion mechanism of polycrystalline corundum and calcium hexaluminate by calcium silicate slags. J Eur Ceram Soc. 29, 1347–1360 (2009)

    Article  Google Scholar 

  26. Ma, B.Y., Yin, Y., Zhu, Q., Zhai, Y.Y., Li, Y., Li, G.Q., Yu, J.K.: Slag corrosion and penetration behaviors of MgAl2O4 and Al2O3 based refractories. Refract Ind Ceram. 56, 494–501 (2016)

    Article  CAS  Google Scholar 

  27. Díaz, L.A., Torrecillas, R., Aza, A.H.D., Pena, P.: Effect of spinel content on slag attack resistance of high alumina refractory castables. J Eur Ceram Soc. 27, 4623–4631 (2007)

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial supports from the open research fund for the State Key Lab for Advanced Refractories (Grant No.2016-01), National Natural Science Foundation of China (Grant No. 51772277), and the postdoctoral fund of the Sinosteel Luoyang Institute of Refractories Research Co.,Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beiyue Ma or Hongxia Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Ma, B., Li, S. et al. Slag corrosion characteristics of MgO-based refractories under vacuum electromagnetic field. J Aust Ceram Soc 55, 913–920 (2019). https://doi.org/10.1007/s41779-019-00323-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00323-9

Keywords

Navigation