Skip to main content

Advertisement

Log in

Zn-doped hydroxyapatite in biomedical applications

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Hydroxyapatite, (Ca10(PO4)6(OH)2), is a ceramic material similar to the inorganic part of the bone and can be synthesized in a laboratory environment with different methods. The structure of HA enables ionic substitutions that change its characteristics especially in terms of biological, antibacterial, and mechanical properties. Among the ions doped into HA structure, zinc (Zn), an essential trace element in the body, is also an important dopant for biomedical applications due to its positive effect on the biological and antibacterial properties of HA. Therefore, Zn-doped HA has been extensively studied as a coating material as well as a constituent of composites and tissue engineering scaffolds. This review summarizes the synthesis methods, sintering parameters, and morphology of crystals formed in Zn-doped HAs. The lattice parameters, crystal size, and phase composition and specific Fourier-transform infrared spectroscopy (FTIR) bands detected for Zn-doped HA were collected. The proliferation and differentiation of stem cells and the functional activities of osteoblastic cells were generally shown to be enhanced on Zn-doped HA when compared with pure HA. Since the number of studies on mechanical properties of Zn-doped HA is limited, there will be a need for more studies in the future. This review also covers co-doping of Zn2+ with Ag+, Sr2+, Mg2+, Cu2+, Fe3+, Si2+, Zr4+, F, Cl, CO32−, SeO32−, and SiO44− ions into the structure of HA. Computational studies to predict the locations of substitution of Zn2+ and mechanical properties, such as bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio, were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Rey, C., Combes, C., Drouet, C., Glimcher, M.J.: Bone mineral: update on chemical composition and structure. Osteoporos. Int. 20, 1013–1021 (2009)

    Article  CAS  Google Scholar 

  2. López, E.O., Rossi, A.L., Bernardo, P.L., Freitas, R.O., Mello, A., Rossi, A.M.: Multiscale connections between morphology and chemistry in crystalline, zinc-substituted hydroxyapatite nanofilms designed for biomedical applications. Ceram. Int. 45, 793–804 (2019)

    Article  Google Scholar 

  3. Yilmaz, B., Alshemary, A.Z., Evis, Z.: Co-doped hydroxyapatites as potential materials for biomedical applications. Microchem. J. 144, 443–453 (2019)

    Article  CAS  Google Scholar 

  4. Chaturvedi, P.K., Seth, C.S., Misra, V.: Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite). Chemosphere. 64, 1109–1114 (2006)

    Article  CAS  Google Scholar 

  5. Yaemsunthorn, K., Randorn, C.: Hydrogen production using economical and environmental friendly nanoparticulate hydroxyapatite and its ion doping. Int. J. Hydrogen Energy. 42, 5056–5062 (2017)

    Article  CAS  Google Scholar 

  6. Murakami, Y., Sugo, K., Yoshitake, T., Hirano, M., Okuyama, T.: Large-scale preparation and characterization of zinc-substituted hydroxyapatite for metal affinity chromatography. Sep. Purif. Technol. 103, 161–166 (2013)

    Article  CAS  Google Scholar 

  7. Fujii, E., Ohkubo, M., Tsuru, K., Hayakawa, S., Osaka, A., Kawabata, K., Bonhomme, C., Babonneau, F.: Selective protein adsorption property and characterization of nano-crystalline zinc-containing hydroxyapatite. Acta Biomater. 2, 69–74 (2006)

    Article  Google Scholar 

  8. Kojima, C., Watanabe, K., Murata, H., Nishio, Y., Makiura, R., Matsunaga, K., Nakahira, A.: Controlled release of DNA from zinc and magnesium ion-doped hydroxyapatites. Res. Chem. Intermed. 45, 23–32 (2019)

    Article  CAS  Google Scholar 

  9. Turki, T., Aissa, A., Bac, C.G., Rachdi, F., Debbabi, M.: Study of mixed Ca-Zn hydroxyapatite surface modified by lactic acid. Appl. Surf. Sci. 258, 6759–6764 (2012)

    Article  CAS  Google Scholar 

  10. Turki, T., Othmani, M., Bac, C.G., Rachdi, F., Bouzouita, K.: Surface modification of zinc-containing hydroxyapatite by tartaric acid. Appl. Surf. Sci. 284, 66–71 (2013)

    Article  CAS  Google Scholar 

  11. Scudeller, L.A., Mavropoulos, E., Tanaka, M.N., Costa, A.M., Braga, C.A.C., López, E.O., Mello, A., Rossi, A.M.: Effects on insulin adsorption due to zinc and strontium substitution in hydroxyapatite. Mater. Sci. Eng. C. 79, 802–811 (2017)

    Article  CAS  Google Scholar 

  12. Gettler, A.O., Bastian, R.: Zinc in Human Tissues. Am. J. Clin. Pathol. 17, 244–249 (1947)

    Article  CAS  Google Scholar 

  13. Chen, X., Tang, Q.L., Zhu, Y.J., Zhu, C.L., Feng, X.P.: Synthesis and antibacterial property of zinc loaded hydroxyapatite nanorods. Mater. Lett. 89, 233–235 (2012)

    Article  CAS  Google Scholar 

  14. Xu, Y., An, L., Chen, L., Cao, L., Zeng, D., Wang, G.: A Facile chemical route to synthesize Zn doped hydroxyapatite nanorods for protein drug delivery. Mater. Chem. Phys. 214, 359–363 (2018)

    Article  CAS  Google Scholar 

  15. Forte, L., Sarda, S., Combes, C., Brouillet, F., Gazzano, M., Marsan, O., Boanini, E., Bigi, A.: Hydroxyapatite functionalization to trigger adsorption and release of risedronate. Colloids Surfaces B Biointerfaces. 160, 493–499 (2017)

    Article  CAS  Google Scholar 

  16. Clarke, B.: Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 3, 131–139 (2008)

    Article  Google Scholar 

  17. Olszta, M.J., Cheng, X., Jee, S.S., Kumar, R., Kim, Y.Y., Kaufman, M.J., Douglas, E.P.: Gower. L.B.: Bone structure and formation: A new perspective. Mater. Sci. Eng. R. Reports. 58, 77–116 (2007)

    Google Scholar 

  18. Masayoshi, Y.: Role of zinc in bone formation and bone resorption. J. Trace Elem. Exp. Med. 11, 119–135 (1998)

    Article  Google Scholar 

  19. Censi, P., Darrah, T.H., Erel, Y.: Medical geochemistry: Geological materials and health. Dordrecht. (2012)

  20. Alhava, E.M., Olkkonen, H., Puittinen, J., Nokso-Koivisto, V.M.: Zinc content of human cancellous bone. Acta Orthop. 48, 1–4 (1977)

    Article  CAS  Google Scholar 

  21. Aitken, J.M.: Factors affecting the distribution of zinc in the human skeleton. Calcif. Tissue Res. 20, 23–30 (1976)

    Article  CAS  Google Scholar 

  22. Lappalainen, R., Knuuttila, M., Lammi, S., Alhava, E.M., Olkkonen, H.: Zn and Cu content in human cancellous bone. Acta Orthop. 53, 51–55 (1982)

    Article  CAS  Google Scholar 

  23. Yamaguchi, M., Hashizume, M.: Effect of β-alanyl-L-histidinato zinc on protein components in osteoblastic MC3T3-E1 cells: Increase in osteocalcin, insulin-like growth factor-I and transforming growth factor-β. Mol. Cell. Biochem. 136, 163–169 (1994)

    Article  CAS  Google Scholar 

  24. Matsui, T., Yamaguchi, M.: Zinc modulation of insulin-like growth factor’s effect in osteoblastic MC3T3-E1 cells. Peptides. 16, 1063–1068 (1995)

    Article  CAS  Google Scholar 

  25. Berg, J.M.: Zinc finger domains: Hypotheses and current knowledge. Annu. Rev. Biophys. Biophys. Chem. 19, 405–421 (1990)

    Article  CAS  Google Scholar 

  26. Markov, D., Naryshkina, T., Mustaev, A., Severinov, K.: A zinc-binding site in the largest subunit of DNA-dependent RNA polymerase involved in enzyme assembly. Genes Dev. 13, 2439–2448 (1999)

    Article  CAS  Google Scholar 

  27. Yamaguchi, M., Matsui, T.: Stimulatory effect of zinc-chelating dipeptide on deoxyribonucleic acid synthesis in osteoblastic MC3T3-E1 cells. Peptides. 17, 1207–1211 (1996)

    Article  CAS  Google Scholar 

  28. Kishi, S., Yamaguchi, M.: Inhibitory effect of zinc compounds on osteoclast-like cell formation in mouse marrow cultures. Biochem. Pharmacol. 48, 1225–1230 (1994)

    Article  CAS  Google Scholar 

  29. Yamaguchi, M., Kishi, S.: Zinc compounds inhibit osteoclast-like cell formation at the earlier stage of rat marrow culture but not osteoclast function. Mol. Cell. Biochem. 158, 171–177 (1996)

    Article  CAS  Google Scholar 

  30. Toledano, M., Osorio, R., Pérez-Álvarez, M.C., Osorio, E., Lynch, C.D., Toledano-Osorio, M.: A zinc-doped endodontic cement facilitates functional mineralization and stress dissipation at the dentin surface. Med. Oral. Patol. Oral. Cir. Bucal. 23, 646–655 (2018)

    Google Scholar 

  31. Hu, W., Ma, J., Wang, J., Zhang, S.: Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles. Mater. Sci. Eng. C. 32, 2404–2410 (2012)

    Article  CAS  Google Scholar 

  32. Zhou, G., Li, Y., Xiao, W., Zhang, L., Zuo, Y., Xue, J., Jansen, J.A.: Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. J. Biomed. Mater. Res. - Part A. 85, 929–937 (2008)

    Article  Google Scholar 

  33. Ito, A., Ojima, K., Naito, H., Ichinose, N., Tateishi, T.: Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J. Biomed. Mater. Res. 50, 178–183 (2000)

    Article  CAS  Google Scholar 

  34. Jallot, E., Nedelec, J.M., Grimault, A.S., Chassot, E., Grandjean-Laquerriere, A., Laquerriere, P., Laurent-Maquin, D.: STEM and EDXS characterisation of physico-chemical reactions at the periphery of sol-gel derived Zn-substituted hydroxyapatites during interactions with biological fluids. Colloids Surf. B. 42, 205–210 (2005)

    Article  CAS  Google Scholar 

  35. Ke, D., Banerjee, D., Bose, S.: In Vitro Characterizations of Si4+ and Zn2+ Doped Plasma Sprayed Hydroxyapatite Coatings Using Osteoblast and Osteoclast Coculture. ACS Biomater. Sci. Eng. 5, 1302–1310 (2019)

    Article  CAS  Google Scholar 

  36. Peretz, A., Papadopoulos, T., Willems, D., Hotimsky, A., Michiels, N., Siderova, M., Bergmann, P., Neve, J.: Zinc supplementation increases bone alkaline phosphatase in healthy men. J. Trace Elem. Med. Biol. 15, 175–178 (2001)

    Article  CAS  Google Scholar 

  37. Tao, Z.S., Zhou, W.S., He, X.W., Liu, W., Bai, B.L., Zhou, Q., Huang, Z.L., Tu, K.K., Li, H., Sun, T., Lv, Y.X., Cui, W., Yang, L.: A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater. Sci. Eng. C. 62, 226–232 (2016)

    Article  CAS  Google Scholar 

  38. Chou, J., Komuro, M., Hao, J., Kuroda, S., Hattori, Y., Ben-Nissan, B., Milthorpe, B., Otsuka, M.: Bioresorbable zinc hydroxyapatite guided bone regeneration membrane for bone regeneration. Clin. Oral Implants Res. 27, 354–360 (2016)

    Article  Google Scholar 

  39. Ofudje, E.A., Adeogun, A.I., Idowu, M.A., Kareem, S.O.: Synthesis and characterization of Zn-Doped hydroxyapatite: scaffold application, antibacterial and bioactivity studies. Heliyon. (2019). https://doi.org/10.1016/j.heliyon.2019.e01716

  40. Kim, H., Mondal, S., Bharathiraja, S., Manivasagan, P., Moorthy, M.S., Oh, J.: Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceram. Int. 44, 6062–6071 (2018)

    Article  CAS  Google Scholar 

  41. Predoi, D., Iconaru, S.L., Predoi, M.V., Buton, N., Motelica-Heino, M.: Zinc doped hydroxyapatite thin films prepared by sol-gel spin coating procedure. Coatings. (2019). https://doi.org/10.3390/coatings9030156

  42. Predoi, D., Iconaru, S.L., Predoi, M.V., Motelica-Heino, M., Guegan, R., Buton, N.: Evaluation of antibacterial activity of zinc-doped hydroxyapatite colloids and dispersion stability using ultrasounds. Nanomaterials. 9, (2019). https://doi.org/10.3390/nano9040515

  43. Kaygili, O., Tatar, C.: The investigation of some physical properties and microstructure of Zn-doped hydroxyapatite bioceramics prepared by sol-gel method. J. Sol-Gel Sci. Technol. 61, 296–309 (2012)

    Article  CAS  Google Scholar 

  44. Pantasri, T., Seet, S., Suwanna, P.: Preparation of strontium- and/or zinc-doped hydroxyapatite nanoparticles and their polycaprolactone composite fibrous scaffolds. J. Phys. Conf. Ser. (2017). https://doi.org/10.1088/1742-6596/901/1/012029

  45. Naqshbandi, A., Sopyan, I., Gunawan, S.: Sol-gel synthesis of Zn doped HA powders and their conversion to porous bodies. Appl. Mech. Mater. 493, 603–608 (2014)

    Article  Google Scholar 

  46. Popa, C.L., Deniaud, A., Michaud-Soret, I., Guégan, R., Motelica-Heino, M., Predoi, D.: Structural and biological assessment of zinc doped hydroxyapatite nanoparticles. J. Nanomater. (2016). https://doi.org/10.1155/2016/1062878

  47. Cox, S.C., Jamshidi, P., Grover, L.M., Mallick, K.K.: Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater. Sci. Eng. C. 35, 106–114 (2014)

    Article  CAS  Google Scholar 

  48. Predoi, D., Iconaru, S.L., Deniaud, A., Chevallet, M., Michaud-Soret, I., Buton, N., Prodan, A.M.: Textural, structural and biological evaluation of hydroxyapatite doped with zinc at low concentrations. Materials. (2017). https://doi.org/10.3390/ma10030229

  49. Bhattacharjee, A., Gupta, A., Verma, M., Murugan, P.A., Sengupta, P., Matheshwaran, S., Manna, I., Balani, K.: Site-specific antibacterial efficacy and cyto/hemo-compatibility of zinc substituted hydroxyapatite. Ceram. Int. 45, 12225–12233 (2019)

    Article  CAS  Google Scholar 

  50. Lala, S., Maity, T.N., Singha, M., Biswas, K., Pradhan, S.K.: Effect of doping (Mg,Mn,Zn) on the microstructure and mechanical properties of spark plasma sintered hydroxyapatites synthesized by mechanical alloying. Ceram. Int. 43, 2389–2397 (2017)

    Article  CAS  Google Scholar 

  51. Radovanović, Ž., Veljović, D., Jokić, B., Dimitrijević, S., Bogdanović, G., Kojić, V., Petrović, R., Janaćković, D.: Biocompatibility and antimicrobial activity of zinc(II)-doped hydroxyapatite, synthesized by a hydrothermal method. J. Serbian Chem. Soc. 77, 1787–1798 (2012)

    Article  Google Scholar 

  52. Yu, W., Sun, T.W., Qi, C., Ding, Z., Zhao, H., Zhao, S., Shi, Z., Zhu, Y.J., Chen, D., He, Y.: Evaluation of zinc-doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation. Int. J. Nanomedicine. 12, 2293–2306 (2017)

    Article  CAS  Google Scholar 

  53. Türk, S., Altınsoy, I., Efe, G.Ç., Ipek, M., Özacar, M., Bindal, C.: Biomimetic synthesis of Ag, Zn or Co doped HA and coating of Ag. Zn or Co doped HA/fMWCNT composite on functionalized Ti. Mater. Sci. Eng. C. 99, 986–998 (2019)

    Google Scholar 

  54. Tank, K.P., Sharma, P., Kanchan, D.K., Joshi, M.J.: FTIR, powder XRD, TEM and dielectric studies of pure and zinc doped nano-hydroxyapatite. Cryst. Res. Technol. 46, 1309–1316 (2011)

    Article  CAS  Google Scholar 

  55. Lowry, N., Han, Y., Meenan, B.J., Boyd, A.R.: Strontium and zinc co-substituted nanophase hydroxyapatite. Ceram. Int. 43, 12070–12078 (2017)

    Article  CAS  Google Scholar 

  56. Yuan, Q., Wu, J., Qin, C., Xu, A., Zhang, Z., Lin, S., Ren, X., Zhang, P.: Spin-coating synthesis and characterization of Zn-doped hydroxyapatite/polylactic acid composite coatings. Surf. Coatings Technol. 307, 461–469 (2016)

    Article  CAS  Google Scholar 

  57. Xiao, S., Wang, M., Wang, L., Zhu, Y.: Environment-friendly synthesis of trace element zn, sr, and f codoping hydroxyapatite with non-cytotoxicity and improved osteoblast proliferation and differentiation. Biol. Trace Elem. Res. 185, 148–161 (2018)

    Article  CAS  Google Scholar 

  58. Zhong, Z., Qin, J., Ma, J.: Rapid synthesis of citrate-zinc substituted hydroxyapatite using the ultrasonication-microwave method. Ceram. Int. 43, 13308–13313 (2017)

    Article  CAS  Google Scholar 

  59. Stanić, V., Dimitrijević, S., Antić-Stanković, J., Mitrić, M., Jokić, B., Plećaš, I.B., Raičević, S.: Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci. 256, 6083–6089 (2010)

    Article  Google Scholar 

  60. Anwar, A., Akbar, S., Sadiqa, A., Kazmi, M.: Novel continuous flow synthesis, characterization and antibacterial studies of nanoscale zinc substituted hydroxyapatite bioceramics. Inorganica Chim. Acta. 453, 16–22 (2016)

    Article  CAS  Google Scholar 

  61. Sakthiabirami, K., Vu, V.T., Kim, J.W., Kang, J.H., Jang, K.J., Oh, G.J., Fisher, J.G., Yun, K.D., Lim, H.P., Park, S.W.: Tailoring interfacial interaction through glass fusion in glass/zinc-hydroxyapatite composite coatings on glass-infiltrated zirconia. Ceram. Int. 44, 16181–16190 (2018)

    Article  CAS  Google Scholar 

  62. Sun, G., Ma, J., Zhang, S.: Electrophoretic deposition of zinc-substituted hydroxyapatite coatings. Mater. Sci. Eng. C. 39, 67–72 (2014)

    Article  CAS  Google Scholar 

  63. Mistry, S., Roy, S., Jyoti Maitra, N., Roy, R., Datta, S., Chanda, A., Sarkar, S.: Safety and efficacy of additive and subtractive surface modification of Ti6Al4V endosseous implant in goat bone. J. Mech. Behav. Biomed. Mater. 57, 69–87 (2016)

    Article  CAS  Google Scholar 

  64. Sridevi, S., Ramya, S., Akshaikumar, K., Kavitha, L., Manoravi, P., Gopi, D.: Fabrication of zinc substituted hydroxyapatite/cellulose nano crystals biocomposite from biowaste materials for biomedical applications. Mater. Today Proc. 26, 3583–3587 (2020)

    Article  CAS  Google Scholar 

  65. Behera, D.R., Nayak, P., Rautray, T.R.: Phosphatidylethanolamine impregnated Zn-HA coated on titanium for enhanced bone growth with antibacterial properties. J. King Saud Univ. - Sci. 32, 848–852 (2020)

    Article  Google Scholar 

  66. Peñaflor Galindo, T.G., Kataoka, T., Fujii, S., Okuda, M., Tagaya, M.: Preparation of nanocrystalline zinc-substituted hydroxyapatite films and their biological properties. Colloids Interface Sci. Commun. 10–11, 15–19 (2016)

    Article  Google Scholar 

  67. Byeon, I.S., Hwang, I.J., Choe, H.C., Brantley, W.A.: Electrochemically-coated hydroxyapatite films on nanotubular Ti-Nb alloys prepared in solutions containing Ca, P, and Zn ions. Thin Solid Films. 620, 132–138 (2016)

    Article  CAS  Google Scholar 

  68. Groza, A., Ciobanu, C.S., Popa, C.L., Iconaru, S.L., Chapon, P., Luculescu, C., Ganciu, M., Predoi, D.: Structural properties and antifungal activity against Candida albicans biofilm of different composite layers based on Ag/Zn doped hydroxyapatite-polydimethylsiloxanes. Polymers (Basel). (2016). https://doi.org/10.3390/polym8040131

  69. Hidalgo-Robatto, B.M., López-Álvarez, M., Azevedo, A.S., Dorado, J., Serra, J., Azevedo, N.F., González, P.: Pulsed laser deposition of copper and zinc doped hydroxyapatite coatings for biomedical applications. Surf. Coatings Technol. 333, 168–177 (2018)

    Article  CAS  Google Scholar 

  70. Byeon, I.S., Lee, K., Choe, H.C., Brantley, W.A.: Surface morphology of Zn-containing hydroxyapatite (Zn-HA) deposited electrochemically on Ti-xNb alloys. Thin Solid Films. 587, 163–168 (2015)

    Article  CAS  Google Scholar 

  71. Zhang, J.Y., Ai, H.J., Qi, M.: Osteoblast growth on the surface of porous Zn-containing HA/TiO2 hybrid coatings on Ti substrate by MAO plus sol-gel methods. Surf. Coatings Technol. 228, 202–205 (2013)

    Article  Google Scholar 

  72. Ding, Q., Zhang, X., Huang, Y., Yan, Y., Pang, X.: In vitro cytocompatibility and corrosion resistance of zinc-doped hydroxyapatite coatings on a titanium substrate. J. Mater. Sci. 50, 189–202 (2015)

    Article  CAS  Google Scholar 

  73. Huang, Y., Zhang, H., Qiao, H., Nian, X., Zhang, X., Wang, W., Zhang, X., Chang, X., Han, S., Pang, X.: Anticorrosive effects and in vitro cytocompatibility of calcium silicate/zinc-doped hydroxyapatite composite coatings on titanium. Appl. Surf. Sci. 357, 1776–1784 (2015)

    Article  CAS  Google Scholar 

  74. Huang, Y., Zhang, X., Qiao, H., Hao, M., Zhang, H., Xu, Z., Zhang, X., Pang, X., Lin, H.: Corrosion resistance and cytocompatibility studies of zinc-doped fluorohydroxyapatite nanocomposite coatings on titanium implant. Ceram. Int. 42, 1903–1915 (2016)

    Article  CAS  Google Scholar 

  75. Ortiz, I.Y., Raybolt dos Santos, A., Costa, A.M., Mavropoulos, E., Tanaka, M.N., Prado da Silva, M.H., de Souza Camargo, S.: In vitro assessment of zinc apatite coatings on titanium surfaces. Ceram. Int. 42, 15502–15510 (2016)

    Article  CAS  Google Scholar 

  76. Bakhsheshi-Rad, H.R., Hamzah, E., Ismail, A.F., Aziz, M., Daroonparvar, M., Saebnoori, E., Chami, A.: In vitro degradation behavior, antibacterial activity and cytotoxicity of TiO2-MAO/ZnHA composite coating on Mg alloy for orthopedic implants. Surf. Coatings Technol. 334, 450–460 (2018)

    Article  CAS  Google Scholar 

  77. Sedelnikova, M.B., Komarova, E.G., Sharkeev, Y.P., Ugodchikova, A.V., Mushtovatova, L.S., Karpova, M.R., Sheikin, V.V., Litvinova, L.S., Khlusov, I.A.: Zn-, Cu- or Ag-incorporated micro-arc coatings on titanium alloys: properties and behavior in synthetic biological media. Surf. Coatings Technol. 369, 52–68 (2019)

    Article  CAS  Google Scholar 

  78. Dittler, M.L., Unalan, I., Grünewald, A., Beltrán, A.M., Grillo, C.A., Destch, R., Gonzalez, M.C., Boccaccini, A.R.: Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Colloids Surfaces B Biointerfaces. (2019). https://doi.org/10.1016/j.colsurfb.2019.110346

  79. Sivaraj, D., Vijayalakshmi, K.: Enhanced corrosion resistance and antibacterial activity of Zn-HA decorated MWCNTs film coated on medical grade 316L SS implant by novel spray pyrolysis technique. J. Anal. Appl. Pyrolysis. 134, 176–182 (2018)

    Article  CAS  Google Scholar 

  80. Sergi, R., Bellucci, D., Candidato, R.T., Lusvarghi, L., Bolelli, G., Pawlowski, L., Candiani, G., Altomare, L., De Nardo, L., Cannillo, V.: Bioactive Zn-doped hydroxyapatite coatings and their antibacterial efficacy against Escherichia coli and Staphylococcus aureus. Surf. Coatings Technol. 352, 84–91 (2018)

    Article  CAS  Google Scholar 

  81. Candidato, R.T., Sergi, R., Jouin, J., Noguera, O., Pawłowski, L.: Advanced microstructural study of solution precursor plasma sprayed Zn doped hydroxyapatite coatings. J. Eur. Ceram. Soc. 38, 2134–2144 (2018)

    Article  CAS  Google Scholar 

  82. Yang, F., Wen-Jing-Dong, He, F.M., Wang, X.X., Zhao, S.F., Yang, G.L.: Osteoblast response to porous titanium surfaces coated with zincsubstituted hydroxyapatite. Oral Surg. Oral Med.Oral Pathol. Oral Radiol. 113, 313–318 (2012)

    Article  Google Scholar 

  83. Miao, S., Weng, W., Cheng, K., Du, P., Shen, G., Han, G., Zhang, S.: Sol-gel preparation of Zn-doped fluoridated hydroxyapatite films. Surf. Coatings Technol. 198, 223–226 (2005)

    Article  CAS  Google Scholar 

  84. Iconaru, S.L., Prodan, A.M., Buton, N., Predoi, D.: Structural characterization and antifungal studies of zinc-doped hydroxyapatite coatings. Molecules. 22, 1–13 (2017)

    Article  Google Scholar 

  85. Pei, L., Zhang, B., Luo, H., Wu, X., Li, G., Sheng, H., Zhang, L.: Electrodeposition of ZnO Nanoprism-Zn substituted hydroxyapatite duplex layer coating for carbon fiber. Ceram. Int. 45, 14278–14286 (2019)

    Article  CAS  Google Scholar 

  86. Prado da Silva, M.H., Moura, F.N., Navarro da Rocha, D., Gobbo, L.A., Costa, A.M., Louro, L.H.L.: Zinc-modified hydroxyapatite coatings obtained from parascholzite alkali conversion. Surf. Coatings Technol. 249, 109–117 (2014)

    Article  CAS  Google Scholar 

  87. Technical Comittee ISO/TC 150/SC 1: ISO13779-2 Implants for surgery—Hydroxyapatite—Part 2: thermally sprayed coatings of hydroxyapatite. ISO® Website. https://www.iso.org/standard/64617.html (2018). Accessed 20 June 2020

  88. Hwang, I.J., Choe, H.C.: Hydroxyapatite coatings containing Zn and Si on Ti-6Al-4Valloy by plasma electrolytic oxidation. Appl. Surf. Sci. 432, 337–346 (2018)

    Article  CAS  Google Scholar 

  89. Yuan, Q., Wu, J., Qin, C., Xu, A., Zhang, Z., Lin, Y., Chen, Z., Lin, S., Yuan, Z., Ren, X., Zhang, P.: One-pot synthesis and characterization of Zn-doped hydroxyapatite nanocomposites. Mater. Chem. Phys. 199, 122–130 (2017)

    Article  CAS  Google Scholar 

  90. Begam, H., Nandi, S.K., Chanda, A., Kundu, B.: Effect of bone morphogenetic protein on Zn-HAp and Zn-HAp/collagen composite: a systematic in vivo study. Res. Vet. Sci. 115, 1–9 (2017)

    Article  CAS  Google Scholar 

  91. Wicaksono, S.T., Rasyida, A., Purnomo, A., Pradita, N.N., Ardhyananta, H., Hidayat, M.I.P.: Composite based chitosan/zinc-doped HA as a candidate material for bone substitute applications. IOP Conf. Ser. Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899X/202/1/012080

  92. Ramana Ramya, J., Thanigai Arul, K., Sathiamurthi, P., Asokan, K., Rajmuhon Singh, N., Narayana Kalkura, S.: Enhanced magnetic behaviour and cell proliferation of gamma irradiated dual metal ions co-doped hydroxyapatite – poly(methyl methacrylate) composite films. React. Funct. Polym. 123, 34–43 (2018)

    Article  CAS  Google Scholar 

  93. Ahmadzadeh, E., Talebnia, F., Tabatabaei, M., Ahmadzadeh, H., Mostaghaci, B.: Osteoconductive composite graft based on bacterial synthesized hydroxyapatite nanoparticles doped with different ions: From synthesis to in vivo studies. Nanomedicine Nanotechnology. Biol. Med. 12, 1387–1395 (2016)

    CAS  Google Scholar 

  94. Ghorbani, F.M., Kaffashi, B., Shokrollahi, P., Seyedjafari, E., Ardeshirylajimi, A.: PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydr. Polym. 118, 133–142 (2015)

    Article  CAS  Google Scholar 

  95. Gnaneshwar, P.V., Sudakaran, S.V., Abisegapriyan, S., Sherine, J., Ramakrishna, S., Rahim, M.H.A., Yusoff, M.M., Jose, R., Venugopal, J.R.: Ramification of zinc oxide doped hydroxyapatite biocomposites for the mineralization of osteoblasts. Mater. Sci. Eng. C. 96, 337–346 (2019)

    Article  CAS  Google Scholar 

  96. Wang, Q., Tang, P., Ge, X., Li, P., Lv, C., Wang, M., Wang, K., Fang, L., Lu, X.: Experimental and simulation studies of strontium/zinc-codoped hydroxyapatite porous scaffolds with excellent osteoinductivity and antibacterial activity. Appl. Surf. Sci. 462, 118–126 (2018)

    Article  CAS  Google Scholar 

  97. Veres, R., Vulpoi, A., Magyari, K., Ciuce, C., Simon, V.: Synthesis, characterisation and in vitro testing of macroporous zinc containing scaffolds obtained by sol-gel and sacrificial template methods. J. Non Cryst. Solids. 373–374, 57–64 (2013)

    Article  Google Scholar 

  98. Devanand Venkatasubbu, G., Ramasamy, S., Ramakrishnan, V., Kumar, J.: Nanocrystalline hydroxyapatite and zinc-doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin. 3 Biotech. 1, 173–186 (2011)

    Article  CAS  Google Scholar 

  99. Guerra-López, J.R., Echeverría, G.A., Güida, J.A., Viña, R., Punte, G.: Synthetic hydroxyapatites doped with Zn(II) studied by X-ray diffraction, infrared, Raman and thermal analysis. J. Phys. Chem. Solids. 81, 57–65 (2015)

    Article  Google Scholar 

  100. Esfahani, H., Salahi, E., Tayebifard, A., Rahimipour, M.R., Keyanpour-Rad, M.: Influence of zinc incorporation on microstructure of hydroxyapatite to characterize the effect of pH and calcination temperatures. J. Asian Ceram. Soc. 2, 248–252 (2014)

    Article  Google Scholar 

  101. Kaygili, O., Keser, S.: Sol-gel synthesis and characterization of Sr/Mg, Mg/Zn and Sr/Zn co-doped hydroxyapatites. Mater. Lett. 141, 161–164 (2015)

    Article  CAS  Google Scholar 

  102. Renaudin, G., Gomes, S., Nedelec, J.M.: First-row transition metal doping in calcium phosphate bioceramics: A detailed crystallographic study. Materials (Basel). 10, 1–22 (2017)

    Article  Google Scholar 

  103. Gomes, S., Nedelec, J.M., Renaudin, G.: On the effect of temperature on the insertion of zinc into hydroxyapatite. Acta Biomater. 8, 1180–1189 (2012)

    Article  CAS  Google Scholar 

  104. Uysal, I., Severcan, F., Tezcaner, A., Evis, Z.: Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite. Prog. Nat. Sci. Mater. Int. 24, 340–349 (2014)

    Article  CAS  Google Scholar 

  105. Zhang, H., Zhao, C., Wen, J., Li, X., Fu, L.: Synthesis and structural characteristics of magnesium and zinc doped hydroxyapatite whiskers. Ceram. - Silikaty. 61, 244–249 (2017)

    Article  CAS  Google Scholar 

  106. Miyaji, F., Kono, Y., Suyama, Y.: Formation and structure of zinc-substituted calcium hydroxyapatite. Mater. Res. Bull. 40, 209–220 (2005)

    Article  CAS  Google Scholar 

  107. Athanasoulia, I.G.I., Christoforidis, M.N., Korres, D.M., Tarantili, P.A.: Synthesis and characterization of Mg, Zn and Sr-incorporated hydroxyapatite whiskers by hydrothermal method properties of PLLA matrix. Pure Appl. Chem. 89, 125–140 (2017)

    Article  CAS  Google Scholar 

  108. Ren, F., Xin, R., Ge, X., Leng, Y.: Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 5, 3141–3149 (2009)

    Article  CAS  Google Scholar 

  109. Lala, S., Ghosh, M., Das, P.K., Das, D., Kar, T., Pradhan, S.K.: Structural and microstructural interpretations of Zn-doped biocompatible bone-like carbonated hydroxyapatite synthesized by mechanical alloying. J. Appl. Crystallogr. 48, 138–148 (2015)

    Article  CAS  Google Scholar 

  110. Webster, T.J., Massa-Schlueter, E.A., Smith, J.L., Slamovich, E.B.: Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials. 25, 2111–2121 (2004)

    Article  CAS  Google Scholar 

  111. Tank, K.P., Chudasama, K.S., Thaker, V.S., Joshi, M.J.: Pure and zinc doped nano-hydroxyapatite: Synthesis, characterization, antimicrobial and hemolytic studies. J. Cryst. Growth. 401, 474–479 (2014)

    Article  CAS  Google Scholar 

  112. Uysal, I., Severcan, F., Evis, Z.: Structural and mechanical characteristics of nanohydroxyapatite doped with zinc and chloride. Adv. Appl. Ceram. 112, 149–157 (2013)

    Article  CAS  Google Scholar 

  113. Uysal, I., Severcan, F., Evis, Z.: Characterization by Fourier transform infrared spectroscopy of hydroxyapatite co-doped with zinc and fluoride. Ceram. Int. 39, 7727–7733 (2013)

    Article  CAS  Google Scholar 

  114. Buazar, F., Alipouryan, S., Kroushawi, F., Hossieni, S.A.: Photodegradation of odorous 2-mercaptobenzoxazole through zinc oxide/hydroxyapatite nanocomposite. Appl. Nanosci. 5, 719–729 (2015)

    Article  CAS  Google Scholar 

  115. Moldovan, M., Prodan, D., Popescu, V., Prejmerean, C., Saroşi, C., Saplonţai, M., TǍlu, S., Vasile, E.: Structural and morphological properties of HA-ZnO powders prepared for biomaterials. Open Chem. 13, 725–733 (2015)

    Article  Google Scholar 

  116. Laskus, A., Zgadza, A., Kolmas, J.: Zn2+ and SeO32− co-substituted hydroxyapatite: Physicochemical properties and biological usefulness. Ceram. Int. 45, 22707–22715 (2019)

    Article  CAS  Google Scholar 

  117. Thian, E.S., Konishi, T., Kawanobe, Y., Lim, P.N., Choong, C., Ho, B., Aizawa, M.: Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. J. Mater. Sci. Mater. Med. 24, 437–445 (2013)

    Article  CAS  Google Scholar 

  118. Wang, X., Ito, A., Sogo, Y., Li, X., Oyane, A.: Zinc-containing apatite layers on external fixation rods promoting cell activity. Acta Biomater. 6, 962–968 (2010)

    Article  CAS  Google Scholar 

  119. Begam, H., Kundu, B., Chanda, A., Nandi, S.K.: MG63 osteoblast cell response on Zn doped hydroxyapatite (HAp) with various surface features. Ceram. Int. 43, 3752–3760 (2017)

    Article  CAS  Google Scholar 

  120. Kazimierczak, P., Kolmas, J., Przekora, A.: Biological response to macroporous chitosan-agarose bone scaffolds comprising Mg-and Zn-doped nano-hydroxyapatite. Int. J. Mol. Sci. 20, 1–20 (2019)

    Article  Google Scholar 

  121. Bir, F., Khireddine, H., Touati, A., Sidane, D., Yala, S., Oudadesse, H.: Electrochemical depositions of fluorohydroxyapatite doped by Cu 2+ , Zn 2+ , Ag + on stainless steel substrates. Appl. Surf. Sci. 258, 7021–7030 (2012)

    Article  CAS  Google Scholar 

  122. Iqbal, N., Kadir, M.R.A., Mahmood, N.H., Salim, N., Froemming, G.R.A., Balaji, H.R., Kamarul, T.: Characterization, antibacterial and in vitro compatibility of zinc-silver doped hydroxyapatite nanoparticles prepared through microwave synthesis. Ceram. Int. 40, 4507–4513 (2014)

    Article  CAS  Google Scholar 

  123. Ramya, J.R., Arul, K.T., Elayaraja, K., Kalkura, S.N.: Physicochemical and biological properties of iron and zinc ions co-doped nanocrystalline hydroxyapatite, synthesized by ultrasonication. Ceram. Int. 40, 16707–16717 (2014)

    Article  CAS  Google Scholar 

  124. Venkatasubbu, G.D., Ramasamy, S., Avadhani, G.S., Palanikumar, L., Kumar, J.: Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells. J. Nanoparticle Res. (2012). https://doi.org/10.1007/s11051-012-0819-3

  125. Sanyal, V., Raja, C.R.: Synthesis, characterization and in-vitro studies of strontium-zinc co-substituted fluorohydroxyapatite for biomedical applications. J. Non Cryst. Solids. 445–446, 81–87 (2016)

    Article  Google Scholar 

  126. Hanna, A.A., Khorshed, L.A., El-Beih, A.A., Sherief, M.A., El-Kheshen, A.A., El-Bassyouni, G.T.: Synthesis, bioactivity and antimicrobial studies on zinc oxide incorporated into nanohydroxyapatite. Egypt. J. Chem. 62, 133–143 (2019)

    Google Scholar 

  127. Alioui, H., Bouras, O., Bollinger, J.C.: Toward an efficient antibacterial agent: Zn- and Mg-doped hydroxyapatite nanopowders. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 54, 315–327 (2019)

    CAS  Google Scholar 

  128. Gopi, D., Karthika, A., Nithiya, S., Kavitha, L.: In vitro biological performance of minerals substituted hydroxyapatite coating by pulsed electrodeposition method. Mater. Chem. Phys. 144, 75–85 (2014)

    Article  CAS  Google Scholar 

  129. Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M.A., Hussain, T., Ali, M., Rafiq, M., Kamil, M.A.: Bacterial biofilm and associated infections. J. Chinese Med. Assoc. 81, 7–11 (2018)

    Article  Google Scholar 

  130. Chanda, A., Dasgupta, S., Bose, S., Bandyopadhyay, A.: Microwave sintering of calcium phosphate ceramics. Mater. Sci. Eng. C. 29, 1144–1149 (2009)

    Article  CAS  Google Scholar 

  131. Tolouei, R., Ramesh, S., Tan, C.Y., Amiriyan, M., Teng, W.D.: Effect of grain size on Vickers microhardness and fracture toughness in calcium phosphate bioceramics. Appl. Mech. Mater. 83, 237–243 (2011)

    Article  CAS  Google Scholar 

  132. Kalita, S.J., Bhatt, H.A.: Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization. Mater. Sci. Eng. C. 27, 837–848 (2007)

    Article  CAS  Google Scholar 

  133. Lowry, N., Brolly, M., Han, Y., McKillop, S., Meenan, B.J., Boyd, A.R.: Synthesis and characterisation of nanophase hydroxyapatite co-substituted with strontium and zinc. Ceram. Int. 44, 7761–7770 (2018)

    Article  CAS  Google Scholar 

  134. Kaygili, O., Keser, S.: Zr/Mg, Zr/Sr and Zr/Zn co-doped hydroxyapatites: synthesis and characterization. Ceram. Int. 42, 9270–9273 (2016)

    Article  CAS  Google Scholar 

  135. Kumar, G.S., Thamizhavel, A., Yokogawa, Y., Kalkura, S.N., Girija, E.K.: Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications. Mater. Chem. Phys. 134, 1127–1135 (2012)

    Article  CAS  Google Scholar 

  136. Friederichs, R.J., Chappell, H.F., Shepherd, D.V., Best, S.M.: Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite. J. R. Soc. Interface. (2015). https://doi.org/10.1098/rsif.2015.0190

  137. Goga, F., Forizs, E., Avram, A., Rotaru, A., Lucian, A., Petean, I., Mocanu, A., Tomoaia-Cotisel, M.: Synthesis and thermal treatment of hydroxyapatite doped with magnesium, zinc and silicon. Rev. Chim. 68, 1193–1200 (2017)

    Article  CAS  Google Scholar 

  138. Alshemary, A.Z., Pazarçeviren, E.A., Dalgic, A.D., Tezcaner, A., Keskin, D., Evis, Z.: Nanocrystalline Zn2+ and SO42− binary doped fluorohydroxyapatite: a novel biomaterial with enhanced osteoconductive and osteoinconductive properties. Mater. Sci. Eng. C. (2019). https://doi.org/10.1016/j.msec.2019.109884

  139. Furko, M., Havasi, V., Kónya, Z., Grünewald, A., Detsch, R., Boccaccini, A.R., Balázsi, C.: Development and characterization of multi-element doped hydroxyapatite bioceramic coatings on metallic implants for orthopedic applications. Bol. la Soc. Esp. Ceram. y Vidr. 57, 55–65 (2018)

    Article  CAS  Google Scholar 

  140. Yoder, C.H., Landes, N.T., Tran, L.K., Smith, A.K., Pasteris, J.D.: The relative stabilities of A- and B-type carbonate substitution in apatites synthesized in aqueous solution. Mineral. Mag. 80, 977–983 (2016)

    Article  Google Scholar 

  141. Reger, N.C., Kundu, B., Balla, V.K., Bhargava, A.K.: In vitro cytotoxicity and ion release of multi-ion doped hydroxyapatite. Int. J. Appl. Ceram. Technol. 16, 503–516 (2019)

    Article  CAS  Google Scholar 

  142. Aryal, S., Matsunaga, K., Ching, W.Y.: Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP). J. Mech. Behav. Biomed. Mater. 47, 135–146 (2015)

    Article  CAS  Google Scholar 

  143. Wang, M., Wang, Q., Lu, X., Wang, K., Ren, F.: Computer simulation of ions doped hydroxyapatite: A brief review. J. Wuhan Univ. Technol. Mater. Sci. Ed. 32, 978–987 (2017)

    Article  CAS  Google Scholar 

  144. Shang, S., Zhao, Q., Zhang, D., Sun, R., Tang, Y.: Molecular dynamics simulation of the adsorption behavior of two different drugs on hydroxyapatite and Zn-doped hydroxyapatite. Mater. Sci. Eng. C. (2019). https://doi.org/10.1016/j.msec.2019.110017

  145. Tamm, T., Peld, M.: Computational study of cation substitutions in apatites. J. Solid. State. Chem. 179, 1581–1587 (2006)

    Article  CAS  Google Scholar 

  146. Matsunaga, K., Murata, H., Mizoguchi, T., Atsushi, N.: Mechanism of incorporation of zinc into hydroxyapatite. Acta Biomater. 6, 2289–2293 (2010)

    Article  CAS  Google Scholar 

Download references

Code availability

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Zafer Evis.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uysal, I., Yilmaz, B. & Evis, Z. Zn-doped hydroxyapatite in biomedical applications. J Aust Ceram Soc 57, 869–897 (2021). https://doi.org/10.1007/s41779-021-00583-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00583-4

Keywords

Navigation