Skip to main content
Log in

Performance evaluation of artificial bee colony algorithm and its variants in the optimum design of steel skeletal structures

  • Original Paper
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Artificial bee colony algorithm (ABC) has been efficiently used to obtain the optimum design of structures under design code limitations. There are several enhancements suggested to improve the performance of ABC even further in the literature. In this chapter, the performance of enhanced ABC variants in the optimum design of steel skeletal frames is studied. The mathematical model of such design problem when based on the provisions of design code requirements results in a discrete nonlinear programming problem. Seven variants of ABC is selected from the literature. These are standard artificial bee colony algorithm (sABC), artificial bee colony algorithm with orthogonal learning (OCABC), quick artificial bee colony algorithm (qABC), noel chaotic artificial bee colony algorithm (STOC-BC), directed artificial bee colony algorithm (dABC), improved artificial bee colony algorithm (NSABC) and artificial bee colony algorithm with Levy flight distribution (ABC_Levy). Seven optimum design algorithms are developed to obtain the solution of the design problem formulated considering design code provisions. Two steel space frames, one ten story and the other fifteen story are optimized using each of the seven optimum design techniques. The performance of each variant is observed and the optimum designs are compared. It is noticed after carrying out the statistical analysis that ABC_Levy and qABC algorithms outperform the other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akay, B., & Karaboga, D. (2012). A modified artificial bee colony algorithm for real-parameter optimization. Information Sciences, 192, 120–142.

    Article  Google Scholar 

  • Akın, A., & Aydoğdu, İ. (2015). Optimum design of steel space frames by hybrid teaching-learning based optimization and harmony search algorithms. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 9(7), 1367–1374.

    Google Scholar 

  • Arasomwan, M. A., & Adewumi, A. (2013). On the performance of linear decreasing inertia weight particle swarm optimization. The Scientific World Journal, 2, 860289.

    Google Scholar 

  • Aydoğdu, İ. (2010). Optimum Design of 3-D Irregular Steel Frames Using Ant Colony Optimization and Harmony Search algorithms. PhD Thesis, Middle East Technical University, August, Ankara, Turkey,

  • Aydoğdu, İ., Akın, A., & Saka, M. (2012b). Optimum design of steel space frames by artificial bee colony algorithm. Paper presented at the ACE 2012, Proceedings of 10th International Conference on Advances in civil Engineering, Ankara, Turkey,

  • Aydoğdu, İ., Akın, A., & Saka, M. (2012a). Discrete design optimization of space steel frames using the adaptive firefly algorithm. Paper presented at the The Eleventh International Conference on Computational Structures Technology, Dubrovnik, Crotia,

  • Aydoğdu, İ., Akın, A., & Saka, M. (2016). Design optimization of real world steel space frames using artificial bee colony algorithm with Levy flight distribution. Advances in Engineering Software, 92, 1–14.

    Article  Google Scholar 

  • Aydogdu, I., Efe, P., Yetkin, M., & Akin, A. (2017). Optimum design of steel space structures using social spider optimization algorithm with spider jump technique. Structural Engineering and Mechanics, 62(3), 259–272.

    Article  Google Scholar 

  • Aydogdu, I., & Saka, M. P. Ant Colony Optimization of Irregular Steel Frames Including Effect of Warping. In B. H. V. Topping, L. F. Costa Neves, & R. C. Barros (Eds.), Twelfth International Conference on Civil, Structural and Environmental Engineering Computing, Madeira, Portugal, 2009: Civil Comp.

  • Bansal, J. C., Singh, P. K., & Pal, N. R. (2019). Evolutionary and swarm intelligence algorithms. Berlin: Springer.

    Book  Google Scholar 

  • Blum, C., & Merkle, D. (2008). Swarm Intelligence in Optimization. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Bonabeau, E., Dorigo, M., Marco, D. D. R. D. F., Theraulaz, G., & Théraulaz, G. (1999). Swarm intelligence: from natural to artificial systems (Vol 1). Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Boyle, P. P. (1977). Options: A monte carlo approach. Journal of Financial Economics, 4(3), 323–338.

    Article  Google Scholar 

  • Çarbaş, S. (2016). Design optimization of steel frames using an enhanced firefly algorithm. Engineering Optimization. https://doi.org/10.1080/0305215X.2016.1145217.

    Article  Google Scholar 

  • Carbas, S., & Aydogdu, I. (2021). Cuckoo search for optimum design of real-sized high-level steel frames. In Applications of Cuckoo Search Algorithm and its Variants (pp. 123–145, Springer Tracts in Nature-Inspired Computing).

  • Chen, W.-F., & Kim, S.-E. (1997). LRFD steel design using advanced analysis (Vol 13). Boca Raton: CRC Press.

    Google Scholar 

  • Coelho, L. D. S., & Alotto, P. (2011). Gaussian artificial bee colony algorithm approach applied to loney's solenoid benchmark problem. Ieee Transactions on Magnetics, 47(5), 1326–1329. https://doi.org/10.1109/tmag.2010.2087317.

    Article  Google Scholar 

  • Degertekin, S. Ö. (2012). Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm. Steel Composite Structures, 12(6), 505–522.

    Article  Google Scholar 

  • Eberhart, R. C., Shi, Y., & Kennedy, J. (2001). Swarm intelligence. Amsterdam: Elsevier.

    Google Scholar 

  • Ellingwood, B. (1986). Structural serviceability: A critical appraisal and research needs. Journal of Structural Engineering, 112(12), 2646–2664.

    Article  Google Scholar 

  • Ellingwood, B. (1989). Serviceability guidelines for steel structures. Engineering Journal AISC, 26(1), 1–8.

    Google Scholar 

  • Gao, W.-F., & Liu, S.-S. (2012). A modified artificial bee colony algorithm. Computers & Operations Research, 39(3), 687–697. https://doi.org/10.1016/j.cor.2011.06.007.

    Article  MATH  Google Scholar 

  • Gao, W.-F., Liu, S.-Y., & Huang, L.-L. (2013). A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Transactions on Cybernetics, 43(3), 1011–1024.

    Article  Google Scholar 

  • Gao, W. F., Liu, S. Y., & Huang, L. L. A. S. C. (2013). A novel artificial bee colony algorithm with Powell's method. Applied Soft Computing, 13(9), 3763–3775.

    Article  Google Scholar 

  • Gao, W., Liu, S., Huang, L. J. J. O. C., & Mathematics, A. (2012). A global best artificial bee colony algorithm for global optimization. Journal of Computational and Applied Mathematics, 236(11), 2741–2753.

    Article  MathSciNet  MATH  Google Scholar 

  • Garg, H. (2014). Solving structural engineering design optimization problems using an artificial bee colony algorithm. Journal of Industrial Management Optimization, 10(3), 777–794.

    Article  MathSciNet  MATH  Google Scholar 

  • Hadidi , A., Kazemzadeh, A. S., & Kazemzadeh, A. S. Structural optimization using artificial bee colony algorithm. In H. C. Rodrigues, J. L. Herskovits, C. M. M. Soares, J. M. Guedes, A. L. Araújo, J. O. Folgado, et al. (Eds.), International Conference on Engineering Optimization, Lisbon, Portugal, 2010

  • ISOVER (2020). Energy efficiency in buildings. https://www.isover.com/energy-efficiency-buildings. Accessed 04.07 2020.

  • Kang, F., Li, J., & Li, H. (2013). Artificial bee colony algorithm and pattern search hybridized for global optimization. Applied Soft Computing, 13(4), 1781–1791.

    Article  Google Scholar 

  • Kang, F., Li, J., Ma, Z., & Li, H. J. J. O. S. (2011). Artificial bee colony algorithm with local search for numerical optimization. Journal of Software, 6(3), 490–497.

    Article  Google Scholar 

  • Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, Computer Engineering Department.

  • Karaboga, D., & Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied mathematics computation, 214(1), 108–132.

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga, D., & Basturk, B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In International fuzzy systems association world congress, 2007a (pp. 789–798): Springer

  • Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471. https://doi.org/10.1007/s10898-007-9149-x.

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697. https://doi.org/10.1016/j.asoc.2007.05.007.

    Article  Google Scholar 

  • Karaboga, D., & Gorkemli, B. A quick artificial bee colony-qABC-algorithm for optimization problems. In 2012 International symposium on innovations in intelligent systems and applications, 2012 (pp. 1–5): IEEE

  • Kaveh, A. (2014). Advances in metaheuristic algorithms for optimal design of structures. Cham: Springer.

    Book  MATH  Google Scholar 

  • Kaveh, A. (2017). Applications of metaheuristic optimization algorithms in civil engineering (Vol. PUBDB-2017–153072). Cham: Springer.

    Book  Google Scholar 

  • Kaveh, A., & Bakhshpoori, T. (2019). Metaheuristics: Outlines, MATLAB codes and examples. Cham: Springer.

    Book  MATH  Google Scholar 

  • Kaveh, A., & Eslamlou, A. D. (2020). Metaheuristic optimization algorithms in civil engineering: New applications. Cham: Springer.

    Book  MATH  Google Scholar 

  • Kaveh, A., & Ghazaan, M. I. (2018). Meta-heuristic algorithms for optimal design of real-size structures. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Kıran, M. S., & Fındık, O. (2015). A directed artificial bee colony algorithm. Applied Soft Computing, 26, 454–462.

    Article  Google Scholar 

  • Kuang, F., Jin, Z., Xu, W., & Zhang, S. A novel chaotic artificial bee colony algorithm based on tent map. In 2014 IEEE congress on evolutionary computation (CEC), 2014 (pp. 235–241): IEEE

  • Lamberti, L., & Pappalettere, C. (2011). Metaheuristic design optimization of skeletal structures: A review. Computational Technology Reviews, 4(1), 1–32.

    Google Scholar 

  • Latif, M., & Saka, M. P. (2019). Optimum design of tied-arch bridges under code requirements using enhanced artificial bee colony algorithm. Advances in Engineering Software, 135, 102685.

    Article  Google Scholar 

  • Li, G., Niu, P., & Xiao, X. (2012). Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Applied Soft Computing, 12(1), 320–332.

    Article  Google Scholar 

  • Liao, X., Zhou, J., Zhang, R., & Zhang, Y. (2012). An adaptive artificial bee colony algorithm for long-term economic dispatch in cascaded hydropower systems. International Journal of Electrical Power & Energy Systems, 43(1), 1340–1345. https://doi.org/10.1016/j.ijepes.2012.04.009.

    Article  Google Scholar 

  • LRFD A. (2000). Load and resistance factor design specification. Chicago: American Institute of Steel Construction.

    Google Scholar 

  • Mantegna, R. N. (1994). Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Physical Review E, 49(5), 4677.

    Article  Google Scholar 

  • NASA (2020). Global Climate Change. https://climate.nasa.gov/evidence/. Accessed 04.07 2020.

  • Saka, M. P., Aydogdu, I., Hasancebi, O., & Geem, Z. W. (2011). Harmony search algorithms in structural engineering. In Computational Optimization and Applications in Engineering and Industry (pp. 145–182): Springer.

  • Saka, M. P., Çarbaş, S., Aydoğdu, İ., & Akın, A. (2016). Use of swarm intelligence in structural steel design optimization. In Metaheuristics and Optimization in Civil Engineering (pp. 43–73): Springer.

  • Saka, M., Carbas, S., Aydogdu, I., Akin, A., & Geem, Z. (2015). Comparative Study on Recent Metaheuristic Algorithms in Design Optimization of Cold-Formed Steel Structures. In M. P. Nikos D. Lagaros (Ed.), Engineering and Applied Sciences Optimization (Vol. 38, pp. 145–173). Cham, Switzerland: Springer.

  • Saka, M. P., & Dogan, E. (2012). Recent developments in metaheuristic algorithms: A review. Computer Technology Review, 5(4), 31–78.

    Article  Google Scholar 

  • Saka, M. P., & Geem, Z. W. (2013). Mathematical and metaheuristic applications in design optimization of steel frame structures: an extensive review. Mathematical Problems in Engineering, 2013, 1–33.

    Article  MATH  Google Scholar 

  • Saka, M. P., & Hasançebi, O. (2009). Adaptive harmony search algorithm for design code optimization of steel structures. In Harmony search algorithms for structural design optimization (pp. 79–120): Springer.

  • Saka, M., Hasançebi, O., & Geem, Z. (2016). Metaheuristics in structural optimization and discussions on harmony search algorithm. Swarm and Evolutionary Computation, 28, 88–97.

    Article  Google Scholar 

  • Shi, Y., Pun, C. M., Hu, H., & Gao, H. (2016). An improved artificial bee colony and its application. Knowledge-Based Systems, 107, 14–31.

    Article  Google Scholar 

  • Sonmez, M. (2011). Artificial Bee Colony algorithm for optimization of truss structures. Applied Soft Computing, 11(2), 2406–2418.

    Article  Google Scholar 

  • Sonmez, M. (2011). Discrete optimum design of truss structures using artificial bee colony algorithm. Structural and Multidisciplinary Optimization, 43(1), 85–97. https://doi.org/10.1007/s00158-010-0551-5.

    Article  Google Scholar 

  • Wang, H., Wu, Z., Rahnamayan, S., Sun, H., Liu, Y., & Pan, J. S. (2014). Multi-strategy ensemble artificial bee colony algorithm. Information Sciences, 279, 587–603.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, B., Qian, C., Ni, W., Fan, S. J. C., Applications, M., & w., (2012). Hybrid harmony search and artificial bee colony algorithm for global optimization problems. Computers & Mathematics with Applications, 64(8), 2621–2634.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, X.-S. (2010a). Engineering optimization: an introduction with metaheuristic applications. Hoboken: Wiley.

    Book  Google Scholar 

  • Yang, X.-S. (2010). Nature-inspired metaheuristic algorithms. Beckington: Luniver press.

    Google Scholar 

  • Yang, X.-S. (2015). Recent advances in swarm intelligence and evolutionary computation. Berlin: Springer.

    Book  Google Scholar 

  • Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A. H., & Karamanoglu, M. (2013). Swarm intelligence and bio-inspired computation: theory and applications: Newnes. Amsterdam: Elsevier.

    Google Scholar 

  • Zhu, G., & Kwong, S. (2010). Gbest-guided artificial bee colony algorithm for numerical function optimization. Applied Mathematics & Computation, 217(7), 3166–3173.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Saka.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saka, M.P., Aydogdu, I. Performance evaluation of artificial bee colony algorithm and its variants in the optimum design of steel skeletal structures. Asian J Civ Eng 22, 73–91 (2021). https://doi.org/10.1007/s42107-020-00299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-020-00299-z

Keywords

Navigation