Skip to main content

Advertisement

Log in

Application of sugarcane leaves as biomass in the removal of cadmium(II), lead(II) and zinc(II) ions from polluted water

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

Here, we present the removal of cadmium(II), lead(II) and zinc(II) ions, by sugarcane (Saccharum spontaneum) leaves. Biomass characterisation was performed with Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray and X-ray diffractometry. The effects of parameters such as solution pH, initial metal ion concentration and contact time were investigated. To understand the adsorption process, data were fitted into models such as the pseudo-first order, pseudo-second order, Weber–Morris, Langmuir, Freundlich and Dubinin–Radushkevich (D–R). The surface of the adsorbent was oval and irregular in shape, with scattered adsorptive sites. Carbon and oxygen were the main element present in the adsorbent, claiming about 59% and 38% of the total elemental compositions, respectively. Optimum pH for lead and zinc ions was 5, while 6 was chosen for cadmium ions. Adsorption increased with time and eventually plateaued after 5 h for lead and 4 h for cadmium and zinc ions. Metal uptake increased with increase in initial metal ion concentration up to 250 mg/L. Adsorption data fitted best to the Langmuir isotherm, with maximum sorption capacity, qmax, obtained as 142.86, 156.25 and 166.67 mg/g for the removal of cadmium, lead and zinc, respectively. The pseudo-second-order model provided the best fit for the kinetic data (R2 of > 0.95), indicating that the sorption process was controlled by chemisorption mechanism. Information from Freundlich and D–R models signified that the uptake of the three metal ions was by physisorption and that ion-exchange mechanism was also involved in zinc adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albadarin, A. B., Mangwandi, C., Al-Muhtaseb, A. H., Walker, G. M., Allen, S. J., & Ahmad, M. N. M. (2012). Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chemical Engineering Journal, 179, 193–202.

    Article  CAS  Google Scholar 

  • AOAC. (1990). Official methods of Analysis (15th ed.). Virginia, USA: Association of Official Analytical Chemist Inc.

    Google Scholar 

  • Babalola, J. O., Koiki, B. A., Eniayewu, Y., Salimonu, A., Olowoyo, J. O., Oninla, V. O., et al. (2016). Adsorption efficacy of Cedrela odorata seed waste for dyes: Non linear fractal kinetics and non linear equilibrium studies. Journal of Environmental Chemical Engineering, 4, 3527–3536.

    Article  CAS  Google Scholar 

  • Castro, L., Blázquez, M. L., González, F., Muñoz, J. A., & Ballester, A. (2017). Biosorption of Zn(II) from industrial effluents using sugar beet pulp and F. vesiculosus: From laboratory tests to a pilot approach. Science of the Total Environment, 598, 856–866.

    Article  CAS  Google Scholar 

  • Cazón, J. P., Viera, M., Donati, E., & Guibal, E. (2013). Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes. Journal of Environmental Management, 129, 423–434.

    Article  CAS  Google Scholar 

  • Cotton, F. A., & Wilkinson, G. (1980). Advanced inorganic chemistry—a comprehensive text (4th ed.). New York: Wiley.

    Google Scholar 

  • Denny, P. (1997). Implementation of constructed wetlands in developing countries. Water Science and Technology, 35, 27–34.

    Article  Google Scholar 

  • Dubinin, M. M., Zaverina, E. D., & Radushkevich, L. V. (1947). Sorption and structure of active carbons. I. Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii, 21, 1351–1362.

    CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Uber die adsorption in lasungen. Zeitschrift für Physikalische Chemie, 57, 385–470.

    CAS  Google Scholar 

  • Gnanasekaran, L., Hemamalini, R., & Ravichandran, K. (2015). Synthesis and characterization of TiO2 quantum dots for photocatalytic application. Journal of Saudi Chemical Society, 19, 589–594.

    Article  Google Scholar 

  • Hassoune, J., Tahiri, S., El Krati, M., Cervera, M. L., & de la Guardia, M. (2018). Removal of hexavalent chromium from aqueous solutions using biopolymers. Journal of Environmental Engineering. https://doi.org/10.1061/(asce)ee.1943-7870.0001396.

    Article  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Horsfall, M., Jr., Abia, A. A., & Spiff, A. I. (2006). Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot esculenta Cranz) tuber bark waste. Bioresource Technology, 97, 283–291.

    Article  CAS  Google Scholar 

  • Jin, Y., Teng, C., Yu, S., Song, T., Dong, L., Liang, J., et al. (2018). Batch and fixed-bed biosorption of Cd(II) from aqueous solution using immobilized Pleurotus ostreatus spent substrate. Chemosphere, 191, 799–808.

    Article  CAS  Google Scholar 

  • Kamal, M. H. M. A., Azira, W. M. K. W. K., Kasmawati, M., Haslizaidi, Z., & Saime, W. W. (2010). Sequestration of toxic Pb(II) ions by chemically treated rubber (Hevea brasiliensis) leaf powder. Journal of Environmental Sciences, 22, 248–256.

    Article  CAS  Google Scholar 

  • Krishnani, K. K., Meng, X., Christodoulatos, C., & Boddu, V. M. (2008). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of Hazardous Materials, 153, 1222–1234.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar Band, 124, 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1402.

    Article  CAS  Google Scholar 

  • Liu, J., Liu, X., Sun, Y., Sun, C., Liu, H., Stevens, L. A., et al. (2018). High density and super ultra-microporous-activated carbon macrospheres with high volumetric capacity for CO2 capture. Advanced Sustainable Systems, 2(2), 1700115. https://doi.org/10.1002/adsu.201700115.

    Article  CAS  Google Scholar 

  • Muñoz, A. J., Espínola, F., & Ruiz, E. (2018). Removal of heavy metals by Klebsiella sp. 3S1. Kinetics, equilibrium and interaction mechanisms of Zn(II) biosorption. Journal of Chemical Technology and Biotechnology, 93, 1370–1380.

    Article  CAS  Google Scholar 

  • Naushad, M., Ahamad, T., Sharma, G., Ai-Muhtaseb, A. H., Albadarin, A. B., Alam, M. M., et al. (2016). Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chemical Engineering Journal, 300, 306–316.

    Article  CAS  Google Scholar 

  • Ofomaja, A. E., & Naidoo, E. B. (2011). Biosorption of copper from aqueous solution by chemically activated pine cone: A kinetic study. Chemical Engineering Journal, 175, 260–270.

    Article  CAS  Google Scholar 

  • Oninla, V. O., Olatunde, A. M., Babalola, J. O., Adesanmi, O. J., Towolawi, G. S., & Awokoya, K. N. (2018). Qualitative assessments of the biomass from oil palm calyxes and its application in heavy metals removal from polluted fresh water. Journal of Environmental Chemical Engineering, 6, 4044–4053.

    Article  CAS  Google Scholar 

  • Pino, G. H., de Mesquita, L. M. S., Torem, M. L., & Pinto, G. A. S. (2006). Biosorption of cadmium by green coconut shell powder. Minerals Engineering, 19, 380–387.

    Article  CAS  Google Scholar 

  • Qin, Y., Liu, C., Jiang, S., Xiong, L., & Sun, Q. (2016). Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Industrial Crops and Products, 87, 182–190.

    Article  CAS  Google Scholar 

  • Reddy, D. K. V., Seshaiah, R. K., & Reddy, A. V. R. (2011). Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination, 268, 150–157.

    Article  CAS  Google Scholar 

  • Suganya, S., & Kumar, P. S. (2018). Influence of ultrasonic waves on preparation of active carbon from coffee waste for the reclamation of effluents containing Cr(VI) ions. Journal of Industrial and Engineering Chemistry, 60, 418–430.

    Article  CAS  Google Scholar 

  • Thitame, P. V., & Shukla, S. R. (2016). Adsorptive removal of reactive dyes from aqueous solution using activated carbon synthesized from waste biomass materials. International Journal of Environmental Science and Technology, 13, 561–570.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., Rangabhashiyam, S., Ashokkumar, T., & Arockiaraj, J. (2017). Assessment of samarium biosorption from aqueous solution by brown macroalga Turbinaria conoides. Journal of the Taiwan Institute of Chemical Engineers, 74, 113–120.

    Article  CAS  Google Scholar 

  • Weber, W. J., & Morris, J. S. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89, 31–59.

    Google Scholar 

  • Zhou, K., Yang, Z., Liu, Y., & Kong, X. (2015). Kinetics and equilibrium studies on biosorption of Pb(II) from aqueous solution by a novel biosorbent: Cyclosorus interruptus. Journal of Environmental Chemical Engineering, 3, 2219–2228.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Chemistry, University of Ibadan, where the major part of the work was carried out; as well as the Polymer and Biophysical Chemistry Research Laboratory, Obafemi Awolowo University, Ile-Ife and the Central Research Laboratory, University of Ibadan, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Adigun or V. O. Oninla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adigun, O.A., Oninla, V.O. & Babarinde, N.A.A. Application of sugarcane leaves as biomass in the removal of cadmium(II), lead(II) and zinc(II) ions from polluted water. Int J Energ Water Res 3, 141–152 (2019). https://doi.org/10.1007/s42108-019-00024-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-019-00024-w

Keywords

Navigation