Skip to main content
Log in

Enhanced electrocaloric effect within a broad temperature range in lead-free polymer composite films by blending the rare-earth doped BaTiO3 nanopowders

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

This paper investigates the electrocaloric effect (ECE) in polymer nanocomposite films containing ferroelectric poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) [P(VDF-TrFE-CFE)] terpolymer matrix and lead-free nanopowders. The nanopowders include pure BaTiO3 and rare-earth substituted Ba0.94R0.04TiO3, where R = La, Nd, Sm, prepared by a modified sol-hydrothermal method. The substitution influences the lattice parameters, but all samples exhibit a perovskite-type tetragonal phase. The dopant enhances the relaxation behavior of the matrix and decreases the current. Using the Maxwell equations, the ECE performance is systematically studied for all samples. As the rare-earth ionic radius decreases, the Curie temperature of the nanocomposite increases and the dielectric constant decreases. The isothermal entropy changes (ΔS), adiabatic temperature changes (ΔT), cooling energy densities (Q), and electrocaloric strengths versus temperature exhibit different dependences on electric field (E). The results demonstrate that rare-earth doping can effectively modify the ECE. Our composites achieve large EC strength values (|ΔT|/|ΔE|) of 7 to 21 μK m kV−1 over a wide temperature range of 25 to 60 °C and electric field range of 750 to 1250 kV cm−1 and provide typical examples of polymer ECE materials containing rare-earth doped nanopowders.

Graphical abstract

The preparation of the polymer nanocomposites and the adiabatic temperature changes and the corresponding electrocaloric strengths of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND (2006) Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311(5765):1270–1271. https://doi.org/10.1126/science.1123811

    Article  CAS  Google Scholar 

  2. Neese B, Chu B, Lu SG, Wang Y, Furman E, Zhang QM (2008) Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321(5890):821–823. https://doi.org/10.1126/science.1159655

    Article  CAS  Google Scholar 

  3. Li X, Qian X, Gu H, Chen X, Lu SG, Lin M, Bateman F, Zhang QM (2012) Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Appl Phys Lett 101(13):132903. https://doi.org/10.1063/1.4756697

    Article  CAS  Google Scholar 

  4. Li X, Qian X, Lu SG, Cheng J, Fang Z, Zhang QM (2011) Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl Phys Lett 99(5):052907. https://doi.org/10.1063/1.3624533

    Article  CAS  Google Scholar 

  5. Lu SG, Rožič B, Zhang QM, Kutnjak Z, Li X, Furman E, Gorny LJ, Lin M, Malič B, Kosec M, Blinc R, Pirc R (2010) Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl Phys Lett 97(16):162904. https://doi.org/10.1063/1.3501975

    Article  CAS  Google Scholar 

  6. Pandya S, Wilbur J, Kim J, Gao R, Dasgupta A, Dames C, Martin LW (2018) Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat Mater 17(5):432–438. https://doi.org/10.1038/s41563-018-0059-8

    Article  CAS  Google Scholar 

  7. Pandya S, Wilbur JD, Bhatia B, Damodaran AR, Monachon C, Dasgupta A, King WP, Dames C, Martin LW (2017) Direct measurement of pyroelectric and electrocaloric effects in thin films. Phys Rev Appl 7 (3). https://doi.org/10.1103/PhysRevApplied.7.034025

  8. Rožič B, Malič B, Uršič H, Holc J, Kosec M, Neese B, Zhang QM, Kutnjak Z (2010) Direct measurements of the giant electrocaloric effect in soft and solid ferroelectric materials. Ferroelectrics 405(1):26–31. https://doi.org/10.1080/00150193.2010.482884

    Article  CAS  Google Scholar 

  9. Li J, Li J, Qin S, Su X, Qiao L, Wang Y, Lookman T, Bai Y (2019) Effects of long- and short-range ferroelectric order on the electrocaloric effect in relaxor ferroelectric ceramics. Phys Rev Appl 11 (4). https://doi.org/10.1103/PhysRevApplied.11.044032

  10. Li J, Zhao X, Zhang T, Qian X, Hou Y, Yang L, Zhang QM (2016) Electrocaloric response in a relaxor ferroelectric polymer at temperatures far below the dielectric maximum. Phase Transitions 90(1):99–103. https://doi.org/10.1080/01411594.2016.1201820

    Article  CAS  Google Scholar 

  11. Lu SG, Rožič B, Zhang QM, Kutnjak Z, Neese B (2011) Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol % copolymer at ferroelectric-paraelectric transition. Appl Phys Lett 98(12):122906. https://doi.org/10.1063/1.3569953

    Article  CAS  Google Scholar 

  12. Lu SG, Rožič B, Zhang QM, Kutnjak Z, Pirc R, Lin M, Li X, Gorny L (2010) Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Appl Phys Lett 97(20):202901. https://doi.org/10.1063/1.3514255

    Article  CAS  Google Scholar 

  13. Yang L, Qian X, Koo C, Hou Y, Zhang T, Zhou Y, Lin M, Qiu J, Zhang QM (2016) Graphene enabled percolative nanocomposites with large electrocaloric efficient under low electric fields over a broad temperature range. Nano Energy 22:461–467. https://doi.org/10.1016/j.nanoen.2016.02.026

    Article  CAS  Google Scholar 

  14. Scott JF (2011) Electrocaloric materials. Annu Rev Mater Res 41(1):229–240. https://doi.org/10.1146/annurev-matsci-062910-100341

    Article  CAS  Google Scholar 

  15. Chen X, Li X, Qian X, Wu S, Lu S, Gu H, Lin M, Shen Q, Zhang QM (2013) A polymer blend approach to tailor the ferroelectric responses in P(VDF–TrFE) based copolymers. Polymer 54(9):2373–2381. https://doi.org/10.1016/j.polymer.2013.02.041

    Article  CAS  Google Scholar 

  16. Aziguli H, Liu Y, Zhang G, Jiang S, Yu P, Wang Q (2019) Tuning the electrocaloric reversibility in ferroelectric copolymers by a blend approach. EPL (Europhysics Letters) 125(5):57001. https://doi.org/10.1209/0295-5075/125/57001

    Article  CAS  Google Scholar 

  17. Chu B, Neese B, Lin M, Lu S, Zhang QM (2008) Enhancement of dielectric energy density in the poly(vinylidene fluoride)-based terpolymer/copolymer blends. https://doi.org/10.1063/1.3002277

  18. Chen X, Qian X, Li X, Lu SG, Gu H, Lin M, Shen Q, Zhang QM (2012) Enhanced electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene)-based terpolymer/copolymer blends. Appl Phys Lett 100(22):222902. https://doi.org/10.1063/1.4722932

    Article  CAS  Google Scholar 

  19. Shirsath SE, Cazorla C, Lu T, Zhang L, Tay YY, Lou X, Liu Y, Li S, Wang D (2019) Interface-charge induced giant electrocaloric effect in lead free ferroelectric thin-film bilayers. Nano Lett. https://doi.org/10.1021/acs.nanolett.9b04727

    Article  Google Scholar 

  20. Luo Z, Zhang D, Liu Y, Zhou D, Yao Y, Liu C, Dkhil B, Ren X, Lou X (2014) Enhanced electrocaloric effect in lead-free BaTi1-xSnxO3 ceramics near room temperature. Appl Phys Lett 105(10):102904. https://doi.org/10.1063/1.4895615

    Article  CAS  Google Scholar 

  21. Bai Y, Zheng G, Shi S (2010) Direct measurement of giant electrocaloric effect in BaTiO3 multilayer thick film structure beyond theoretical prediction. Appl Phys Lett 96(19):192902. https://doi.org/10.1063/1.3430045

    Article  CAS  Google Scholar 

  22. Han F, Bai Y, Qiao L, Guo D (2016) A systematic modification of the large electrocaloric effect within a broad temperature range in rare-earth doped BaTiO3 ceramics. J Mater Chem C 4(9):1842–1849. https://doi.org/10.1039/c5tc04209g

    Article  CAS  Google Scholar 

  23. Qian X, Ye H, Zhang Y, Gu H, Li X, Randall CA, Zhang QM (2014) Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Adv Func Mater 24(9):1300–1305. https://doi.org/10.1002/adfm.201302386

    Article  CAS  Google Scholar 

  24. Hou Y, Yang L, Qian X, Zhang T, Zhang QM (2016) Enhanced electrocaloric effect in composition gradient bilayer thick films. Appl Phys Lett 108(13):133501. https://doi.org/10.1063/1.4944409

  25. Filipič C, Kutnjak Z, Pirc R, Canu G, Petzelt J (2016) BaZr0.5Ti0.5O3: lead-free relaxor ferroelectric or dipolar glass. Phys Rev B 93 (22). https://doi.org/10.1103/PhysRevB.93.224105

  26. Ye H, Qian X, Jeong D, Zhang S, Zhou Y, Shao W, Zhen L, Zhang QM (2014). Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film. Appl Phys Lett 105 (15):152908 https://doi.org/10.1063/1.4898599

  27. Hou Y, Yang L, Qian X, Zhang T, Zhang QM (2016) Electrocaloric response near room temperature in Zr- and Sn-doped BaTiO3 systems. Multidiscip Sci 374 (2074). https://doi.org/10.1098/rsta.2016.00552016.0055

  28. Li J, Chang Y, Yang S, Tian Y, Hu Q, Zhuang Y, Xu Z, Li F (2019) Lead-free bilayer thick films with giant electrocaloric effect near room temperature. ACS Appl Mater Interfaces 11(26):23346–23352. https://doi.org/10.1021/acsami.9b06279

    Article  CAS  Google Scholar 

  29. Xie S, Bai Y, Han F, Qin S, Li J, Qiao L, Guo D (2017) Distinct effects of Ce doping in A or B sites on the electrocaloric effect of BaTiO3 ceramics. J Alloy Compd 724:163–168. https://doi.org/10.1016/j.jallcom.2017.07.012

    Article  CAS  Google Scholar 

  30. Ganguly P (2015) Influence of ionic radius of rare-earths on the structural and electrical properties of Ba5RTi3Nb7O30 (R=rare-earth) ferroelectric ceramics. J Rare Earths 33(12):1310–1315. https://doi.org/10.1016/s1002-0721(14)60562-7

    Article  CAS  Google Scholar 

  31. Shen M, Qin Y, Zhang Y, Marwat MA, Zhang C, Wang W, Li M, Zhang H, Zhang G, Jiang S (2018) Enhanced pyroelectric properties of lead-free BNT-BA-KNN ceramics for thermal energy harvesting. J Am Ceram Soc 102(7):3990–3999. https://doi.org/10.1111/jace.16250

    Article  CAS  Google Scholar 

  32. Zhang G, Zhang X, Yang T, Li Q, Chen L, Jiang S, Wang Q (2015) Colossal room-temperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured barium strontium titanates. ACS Nano 9(7):7164–7174. https://doi.org/10.1021/acsnano.5b03371

    Article  CAS  Google Scholar 

  33. Li Q, Zhang G, Zhang X, Jiang S, Zeng Y, Wang Q (2015) Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy. Adv Mater 27(13):2236–2241. https://doi.org/10.1002/adma.201405495

    Article  CAS  Google Scholar 

  34. Lu Y, Yu J, Huang J, Yu S, Zeng X, Sun R, Wong C (2019) Enhanced electrocaloric effect for refrigeration in lead-free polymer composite films with an optimal filler loading. Appl Phys Lett 114(23):233901. https://doi.org/10.1063/1.5093968

    Article  CAS  Google Scholar 

  35. Zhang G, Li Q, Gu H, Jiang S, Han K, Gadinski MR, Haque MA, Zhang Q, Wang Q (2015) Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Adv Mater 27(8):1450–1454. https://doi.org/10.1002/adma.201404591

    Article  CAS  Google Scholar 

  36. Sun Q, Hu J, Gu Q, Bian K, Wang J, Xiong K, Zhu K (2016) Sol-hydrothermal synthesis, crystal structures and excellent dielectric stability of yttrium doped BaTiO3 ceramics. Mater Technol 31(14):854–859. https://doi.org/10.1080/10667857.2016.1253265

    Article  CAS  Google Scholar 

  37. Moreira ML, Mambrin GP, Volanti DP, Leite ER, Orlandi MO, Pizani PS, Mastelaro VR, Paiva-Santos CO, Longo E, Varela JA (2008) Hydrothermal microwave: a new route to obtain photoluminescent crystalline BaTiO3 nanoparticles. Chem Mater 20(16):5381–5387. https://doi.org/10.1021/cm801638d

    Article  CAS  Google Scholar 

  38. Adireddy S, Lin C, Cao B, Zhou W, Caruntu G (2010) Solution-based growth of monodisperse cube-like BaTiOcolloidal nanocrystals. Chem Mater 22(6):1946–1948. https://doi.org/10.1021/cm9038768

    Article  CAS  Google Scholar 

  39. Chandramouli K, Viswarupachary P, Naidu MS (2005) Effect of Li+ substitution on dielectric behaviour of BSNN ceramics. Ferroelectrics 325(1):3–6. https://doi.org/10.1080/00150190500326357

    Article  CAS  Google Scholar 

  40. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst 32(5):751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  41. Chen X, Li X, Qian X, Lin M, Wu S, Shen Q, Zhang Q (2013) A nanocomposite approach to tailor electrocaloric effect in ferroelectric polymer. Polymer 54(20):5299–5302. https://doi.org/10.1016/j.polymer.2013.07.052

    Article  CAS  Google Scholar 

  42. Lu B, Chen X, Zhang T, Lu SG, Zhang QM (2018) Enhancing the electrocaloric effect in a relaxor polymer by including minor normal ferroelectric phase. Appl Phys Lett 113(15):153903. https://doi.org/10.1063/1.5054114

    Article  CAS  Google Scholar 

  43. Daniels JE, Jo W, Rodel J, Honkimaki V, Jones JL (2010) Electric-field-induced phase-change behavior in (Bi0.5Na0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3: a combinatorial investigation. Acta Mater 58(6):2103–2111. https://doi.org/10.1016/j.actamat.2009.11.052

    Article  CAS  Google Scholar 

  44. Seifert KTP, Jo W, Rödel J (2010) Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(K0.5Na0.5)NbO3 lead-free piezoceramics. J Am Ceram Soc https://doi.org/10.1111/j.1551-2916.2009.03573.x

  45. Viola G, Ning H, Reece MJ, Wilson R, Correia TM, Weaver P, Cain MG, Yan H (2012) Reversibility in electric field-induced transitions and energy storage properties of bismuth-based perovskite ceramics. J Phys D Appl Phys 45(35):355302. https://doi.org/10.1088/0022-3727/45/35/355302

    Article  CAS  Google Scholar 

  46. Zhang G, Fan B, Zhao P, Hu Z, Liu Y, Liu F, Jiang S, Zhang S, Li H, Wang Q (2018) Ferroelectric polymer nanocomposites with complementary nanostructured fillers for electrocaloric cooling with high power density and great efficiency. ACS Appl Energy Mater 1(3):1344–1354. https://doi.org/10.1021/acsaem.8b00052

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China (No. 51888103, 51606192) and the CAS Pioneer Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Yang or Hang Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Gao, Y., Ma, Y. et al. Enhanced electrocaloric effect within a broad temperature range in lead-free polymer composite films by blending the rare-earth doped BaTiO3 nanopowders. Adv Compos Hybrid Mater 4, 469–477 (2021). https://doi.org/10.1007/s42114-021-00252-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00252-x

Keywords

Navigation